题目地址:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=show_problem&problem=2370
思路:mat[x]表示数字x所需的火柴数,则当有i根火柴时,每添加一个数字x,就行状态i转移到状态i+mat[x]。令d[i]表示状态i个火柴时的方案数,则每次从状态i到状态i+mat[x]的方案数即为d[i+mat[x]]+=d[i]。答案即为f[1]+f[2]+...+f[n](火柴不必全部使用完)。由于不允许前导零存在,则当火柴数为0时,不允许其组成数字0(最后若火柴数大于6,则最后结果加一,即加上组成0)。
import java.math.BigInteger;
import java.util.Scanner;
public class Main
{
static final int maxn=2000+50;
public static void main(String[] args)
{
int[] mat={6,2,5,5,4,5,6,3,7,6};
BigInteger[] d=new BigInteger[maxn];
BigInteger[] f=new BigInteger[maxn];
d[0]=BigInteger.ONE;
for(int i=1;i<maxn;i++)
{
d[i]=BigInteger.ZERO;
f[i]=BigInteger.ZERO;
}
for(int i=0;i<maxn;i++)
{
for(int j=0;j<10;j++)
{
if(i==0&&j==0) continue;
if(i+mat[j]<maxn) d[i+mat[j]]=d[i+mat[j]].add(d[i]);
}
}
for(int i=2;i<maxn;i++)
f[i]=f[i-1].add(d[i]);
Scanner in=new Scanner(System.in);
while(in.hasNext())
{
int n=in.nextInt();
if(n>=6)
{
System.out.println(f[n].add(BigInteger.ONE));
}
else
{
System.out.println(f[n]);
}
}
}
}