首先我们要明白
树状数组和线段树很像,但能用树状数组解决的问题,基本上都能用线段树解决,而线段树能解决的树状数组不一定能解决。相比较而言,树状数组
效率要高很多。但使用范围比线段树小(如查询每个区间最小值问题需要线段树)。
树状数组的图解
c1 = a1
c2 = a1 + a2
c3 = a3
c4 = a1 + a2 + a3 + a4
c5 = a5
c6 = a5 + a6
c7 = a7
c8 = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8
对于序列a,我们设一个数组C定义C[i] = a[i – 2^k + 1] + … + a[i],k为i在二进制下末尾0的个数
树状数组的代码量非常短 核心三个函数 只有10行左右 但是很不好理解
博主也没有理解所以在这里记录一下
三个核心函数
求解的是二进制最低位的 1 1 <script type="math/tex" id="MathJax-Element-5">1</script>的位置是多少
int lowbit(int x)
{
return x&(-x);
}
将a[p]上加一个值x(如果减去取-x即可,即更新C数组
void update(int p, int x)
{
while(p <= n) {
c[p] += x;
p += lowbit(p);
}
}
求前p项的和
int sum(int p)
{
int sum = 0;
while(p > 0) {
sum += c[p];
p -= lowbit(p);
}
}