题目描述
这个问题是这样的:
对于任何一个n阶方阵,若任意从其中选择n个不同行不同列的位置,其上的权值之和均相等,则我们称这个矩阵是巧妙的。注意对于n=1的任何矩阵都是巧妙的。 例如矩阵
147258369
是巧妙的,因为
1+5+9=1+6+8=2+4+9=2+6+7=3+5+7=3+4+8=15
而矩阵 1221 不巧妙,因为 1+1≠2+2 。
现在有一个 n∗m 大小的矩阵M以及T个询问,每次询问其一个子方阵是否是巧妙的。
输入
从标准输入读入数据。
输入第一行包含三个正整数 n,m,T 。
之后n行每行m个空格分割的非负整数,表示矩阵 M 。
之后T行每行3个正整数
输出
输出到标准输出。
输出包含T行每行一个字符Y或者N。Y表示被询问的方阵是巧妙的,N表示不是。
样例
3 3 4
1 1 1
1 1 1
1 1 2
1 1 2
1 1 3
2 2 2
2 1 2
HINT
Y
N
N
Y
题意
就是证明矩阵的任意一个二阶子矩阵是巧妙矩阵就可以了
证明有空再写
二维数组预处理一下结果 时间复杂度可以做到
O(n2+T)
AC代码
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define CLR(a,b) memset(a,(b),sizeof(a))
const int MAXN = 1e3+10;
int arr[MAXN][MAXN];
int main()
{
int n, m, T;
cin >> n >> m >> T;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
cin >> arr[i][j];
}
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j < n; j++) {
arr[i][j] -= arr[i][j+1];
}
}
for(int i = 1; i < n; i++) {
for(int j = 1; j < m; j++) {
arr[i][j] = (arr[i][j]==arr[i+1][j]);
}
}
for(int i = 1; i < n; i++) {
for(int j = 1; j < m; j++) {
arr[i][j] += arr[i-1][j];
}
}
while(T--) {
int x, y, k, fg = 1;
cin >> x >> y >> k;
for(int i = y; i < y+k-1; i++) {
fg &= ((arr[x+k-2][i]-arr[x-1][i])==(k-1));
}
if(fg) cout << "Y\n";
else cout << "N\n";
}
return 0;
}