LOJ #6256. 「CodePlus 2017 12 月赛」可做题1

题目描述

这个问题是这样的:

对于任何一个n阶方阵,若任意从其中选择n个不同行不同列的位置,其上的权值之和均相等,则我们称这个矩阵是巧妙的。注意对于n=1的任何矩阵都是巧妙的。 例如矩阵 147258369 是巧妙的,因为
1+5+9=1+6+8=2+4+9=2+6+7=3+5+7=3+4+8=15

而矩阵 1221 不巧妙,因为 1+12+2

现在有一个 nm 大小的矩阵M以及T个询问,每次询问其一个子方阵是否是巧妙的。

输入

从标准输入读入数据。

输入第一行包含三个正整数 n,m,T

之后n行每行m个空格分割的非负整数,表示矩阵 M

之后T行每行3个正整数x,y,k,表示询问第x行第y列为左上角的 k 阶方阵是否是巧妙的。保证这个矩阵完全位于M之中。

输出

输出到标准输出。

输出包含T行每行一个字符Y或者N。Y表示被询问的方阵是巧妙的,N表示不是。

样例

3 3 4
1 1 1
1 1 1
1 1 2
1 1 2
1 1 3
2 2 2
2 1 2

HINT

Y
N
N
Y

题意

就是证明矩阵的任意一个二阶子矩阵是巧妙矩阵就可以了
证明有空再写
二维数组预处理一下结果 时间复杂度可以做到 O(n2+T)

AC代码

#include <bits/stdc++.h>
using namespace std;

#define LL long long
#define CLR(a,b) memset(a,(b),sizeof(a))
const int MAXN = 1e3+10;
int arr[MAXN][MAXN];

int main()
{
    int n, m, T;
    cin >> n >> m >> T;
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
            cin >> arr[i][j];
        }
    }
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j < n; j++) {
            arr[i][j] -= arr[i][j+1];
        }
    }
    for(int i = 1; i < n; i++) {
        for(int j = 1; j < m; j++) {
            arr[i][j] = (arr[i][j]==arr[i+1][j]);
        }
    }
    for(int i = 1; i < n; i++) {
        for(int j = 1; j < m; j++) {
            arr[i][j] += arr[i-1][j];
        }
    }
    while(T--) {
        int x, y, k, fg = 1;
        cin >> x >> y >> k;
        for(int i = y; i < y+k-1; i++) {
            fg &= ((arr[x+k-2][i]-arr[x-1][i])==(k-1));
        }
        if(fg)  cout << "Y\n";
        else cout << "N\n";
    }



return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值