1084 矩阵取数问题 V2
题目描述
一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上。第1遍时只能向下和向右走,第2遍时只能向上和向左走。两次如果经过同一个格子,则该格子的奖励只计算一次,求能够获得的最大价值。
例如:3 * 3的方格。
1 3 3
2 1 3
2 2 1
能够获得的最大价值为:17。1 -> 3 -> 3 -> 3 -> 1 -> 2 -> 2 -> 2 -> 1。其中起点和终点的奖励只计算1次。
输入
第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200)
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= A[i,j] <= 10000)
输出
输出能够获得的最大价值。
样例
Input示例
3 3
1 3 3
2 1 3
2 2 1
Output示例
17
题意
update: 暑假又看一一遍 貌似终于会了一点点
多线程DP 不会写 放上讨论区题解
http://www.51nod.com/question/index.html#!questionId=852
寒假时候写的题了 现在再写还是出错,,,
AC代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define pb push_back
#define ls o<<1
#define rs o<<1|1
#define fi first
#define se second
#define CLR(a, b) memset(a, (b), sizeof(a))
const int mod = 1e9+7;
const int MAXN = 2e2+10;
void F() {
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
}
int mps[MAXN][MAXN], dp[MAXN<<1][MAXN][MAXN];
int main() {
F();
int n, m;
cin >> m >> n;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
cin >> mps[i][j];
for(int k = 1; k <= n+m; ++k) {
for(int i = 1; i <= n; ++i) {
for(int p = 1; p <= n; ++p) {
if(k-p>=1 && k-i>=1) {
dp[k][i][p] = max(max(dp[k-1][i][p-1], dp[k-1][i-1][p]),max(dp[k-1][i][p], dp[k-1][i-1][p-1]))+mps[i][k-i]+mps[p][k-p];
if(p == i)
dp[k][i][p] -= mps[p][k-p];
}
}
}
}
cout << dp[n+m][n][n] << endl;
return 0;
}