修路方案(次小生成树)

这篇博客讨论了如何在保证连接所有城市的同时,寻找与已知最小成本生成树花费相同的替代方案,涉及图论和最优化问题。
摘要由CSDN通过智能技术生成
描述

南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。

现在已经知道哪些城市之间可以修路,如果修路,花费是多少。

现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。

但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。

输入
第一行输入一个整数T(1<T<20),表示测试数据的组数
每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。
随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No)
样例输入
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
样例输出
No

Yes


题解:其实就是求出来最小生成树外的另外一条最小生成树,第一次求出最小生成树后,我们把每两个点之间的最大值保存下来,因为当我枚举一条没有访问的边时,我可以删除两点路径之间的任意一条边,当我加入该边时,该路径中每个点肯定是可达的。然而我要使得花费最小,所以删除最大边。两点之间最大边可以通过dp算的。每当我访问一个点之后,我就求出访问了的点之间的最大值,即dp[i][j] = max(c[i],dp[j][pre[i]]);i表示刚找到的点,j表示访问过的点。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>

using namespace std;

const int INF = 0x3fffffff;

int map[505][505];  //表示i与j之间的花费 
int dp[505][505];   //i与j之间路径花费的最大值 
bool used[505][505]; //保存最小生成树的边 
bool visited[505];   //
int pre[505];        //最小生成树每个点的前驱 
int c[505];          //每次更新 
int ans;

void prim(int n)
{
	ans = 0;
	memset(visited,false,sizeof(visited));
	memset(used,false,sizeof(used));
	for(int i = 1;i <= n;i++)  //从1开始找 
	{
		c[i] = map[1][i];
		pre[i] = 1;           //所有点的前驱都是1 
	}
	visited[1] = true;
	
	for(int i = 1;i < n;i++) //找n-1条边 
	{
		int min = INF;
		int k;
		for(int j = 1;j <= n;j++)    //每次在数组中找到最小边 
		{
			if(!visited[j] && min > c[j])
			{ 
				min = c[j];     
				k = j;
			}
		}
		
		visited[k] = true;
		ans += min;
		used[pre[k]][k] = true;    //保存最小生成树的边 
		used[k][pre[k]] = true;
		
		for(int j = 1;j <= n;j++)  //更新 
		{
			if(visited[j] && k != j) //在访问过的节点中得到两点之间最大边 
			{
				dp[k][j] = dp[j][k] = max(c[k],dp[pre[k]][j]);
			}
			
			if(!visited[j] && c[j] > map[k][j]) //更新数组 
			{
				c[j] = map[k][j];
				pre[j] = k;
			}
		}
	}	
	
	int maxnum = INF;
	for(int i = 1;i <= n;i++)
	{
		for(int j = i + 1;j <= n;j++)
		{
			if(!used[i][j] && map[i][j] != INF)  //枚举每一条除了生成树之外的相连的边 
			{
				maxnum = min(maxnum,ans - dp[i][j] + map[i][j]);
			}
		}
	}
	
	if(maxnum == ans)
	{
		cout<<"Yes\n";
	}
	else
	{
		cout<<"No\n";
	}
}

int main()
{
	int T;
	cin>>T;
	int n,m;
	int a,b,l;
	while(T--)
	{
		scanf("%d%d",&n,&m);
		for(int i = 1;i <= n;i++)
		{
			for(int j = 1;j <= n;j++)
			{
				if(i == j)
				{
					map[i][j] = 0;
				}
				else
				{
					map[i][j] = INF;   //表示没有路 
				}
			}
		}
		for(int i = 0;i < m;i++)
		{
			scanf("%d%d%d",&a,&b,&l);
			map[a][b] = l;
			map[b][a] = l;
		}
		
		prim(n);
	}
	
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值