修路方案

修路方案

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 5
描述

南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。

现在已经知道哪些城市之间可以修路,如果修路,花费是多少。

现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。

但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。

输入
第一行输入一个整数T(1<T<20),表示测试数据的组数
每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。
随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No)
样例输入
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
样例输出
No

Yes

解题思路这道题让找两种以上的最小花费方案,需要找次小生成树,分两步进行:

(1)先找出最小生成树,并把组成最小生成树的边标记,

(2)然后每次删除最小生成树中的一条边,看其他边组成的最小生成树等不等与第一次算的,如果等于就可以break,说明已经找了两种最小方案,否则继续寻找到,直到结束

注意  可能删除一个边后其他边组不成一个连通的通路

代码如下:

# include<stdio.h>
# include<string.h>
# include<algorithm>
using namespace std;
struct node{
	int x;
	int y;
	int w;	
}a[200005];
bool cmp(node a,node b)
{
   return a.w<b.w;	
}
int n,m,v[505],f[505];
int find(int w)
{
	int a=w;
	while(a!=f[a])
	a=f[a];
	return a;
}
void link(int c1,int c2)
{
	int k1=find(c1);
	int k2=find(c2);
	if(k1!=k2)
	f[k1]=k1;
}
int main(){
	int t;
	scanf("%d",&t);
	while(t--)
	{    memset(v,0,sizeof(v));        //对最小生成树的边进行标记 
		scanf("%d%d",&n,&m);
		for(int i=1;i<=m;i++)
		scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);
		for(int i=1;i<=n;i++)
		f[i]=i;
		sort(a+1,a+m+1,cmp);
		int sum=0,num=0;
		for(int i=1;i<=m;i++)        //第一步 
		{
			if(find(a[i].x)!=find(a[i].y))
			{
				v[i]=1;
				num++;
				link(a[i].x,a[i].y);
				sum+=a[i].w;
			}	
			if(num==n-1) break; 					
		}
	//	printf("sum=%d\n",sum);   最小生成树的花费 
		int k=0;
		for(int i=1;i<=m;i++)           //第二步 
		{int sum1=0;
		   num=0;
			if(v[i])
			{
			for(int l=1;l<=n;l++)
		   f[l]=l;	
		for(int j=1;j<=m;j++)						
					if((i!=j)&&(find(a[j].x)!=find(a[j].y)))
			{
				num++;
				link(a[j].x,a[j].y);
				sum1+=a[j].w;
				if(num==n-1) break;
			}	
			
			}
		//	printf("sum1=%d\n",sum1);       减去一条边重新构成次最小生成树的花费 
			if(sum==sum1) 
			{
				k=1;
				break;
			}
			
		}
		if(k) printf("Yes\n");
		else printf("No\n");
		
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值