修路方案
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。
现在已经知道哪些城市之间可以修路,如果修路,花费是多少。
现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。
但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。
-
输入
-
第一行输入一个整数T(1<T<20),表示测试数据的组数
每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。
随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
- 对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No) 样例输入
-
2 3 3 1 2 1 2 3 2 3 1 3 4 4 1 2 2 2 3 2 3 4 2 4 1 2
样例输出
-
No
Yes
-
解题思路:这道题让找两种以上的最小花费方案,需要找次小生成树,分两步进行:
-
(1)先找出最小生成树,并把组成最小生成树的边标记,
-
(2)然后每次删除最小生成树中的一条边,看其他边组成的最小生成树等不等与第一次算的,如果等于就可以break,说明已经找了两种最小方案,否则继续寻找到,直到结束
-
注意 可能删除一个边后其他边组不成一个连通的通路
-
代码如下:
-
# include<stdio.h> # include<string.h> # include<algorithm> using namespace std; struct node{ int x; int y; int w; }a[200005]; bool cmp(node a,node b) { return a.w<b.w; } int n,m,v[505],f[505]; int find(int w) { int a=w; while(a!=f[a]) a=f[a]; return a; } void link(int c1,int c2) { int k1=find(c1); int k2=find(c2); if(k1!=k2) f[k1]=k1; } int main(){ int t; scanf("%d",&t); while(t--) { memset(v,0,sizeof(v)); //对最小生成树的边进行标记 scanf("%d%d",&n,&m); for(int i=1;i<=m;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w); for(int i=1;i<=n;i++) f[i]=i; sort(a+1,a+m+1,cmp); int sum=0,num=0; for(int i=1;i<=m;i++) //第一步 { if(find(a[i].x)!=find(a[i].y)) { v[i]=1; num++; link(a[i].x,a[i].y); sum+=a[i].w; } if(num==n-1) break; } // printf("sum=%d\n",sum); 最小生成树的花费 int k=0; for(int i=1;i<=m;i++) //第二步 {int sum1=0; num=0; if(v[i]) { for(int l=1;l<=n;l++) f[l]=l; for(int j=1;j<=m;j++) if((i!=j)&&(find(a[j].x)!=find(a[j].y))) { num++; link(a[j].x,a[j].y); sum1+=a[j].w; if(num==n-1) break; } } // printf("sum1=%d\n",sum1); 减去一条边重新构成次最小生成树的花费 if(sum==sum1) { k=1; break; } } if(k) printf("Yes\n"); else printf("No\n"); } return 0; }