Description
公交车一共经过
N(1<=N<=20000)
个站点,从站点1一直驶到站点
N
。
注意:对于每一群奶牛,可以部分满足,也可以全部满足,也可以全部不满足。
Input
第1行: 三个整数:
K
,
第2..
Output
一行:可以在庙会乘坐捷运的牛的最大头数
Sample Input
8 15 3
1 5 2
13 14 1
5 8 3
8 14 2
14 15 1
9 12 1
12 15 2
4 6 1
Sample Output
10
HINT
捷运可以把2头奶牛从展台1送到展台5,3头奶牛从展台5到展台8, 2头奶牛从展台8 到展台14,1头奶牛从展台9送到展台12,一头奶牛从展台13送到展台14, 一头奶牛从 14送到15。
Source
Gold
思路
这道题其实很简单,先按照旅行结束地点从小到大排序,如果结束地点相同则按照开始地点从大到小排序,再用线段树维护区间最小值,询问每一批旅客能不能上车,就是询问当前区间的最小值是多少,如果上车
x
头牛就将对应区间减去
代码
#include <cstdio>
#include <algorithm>
const int maxn=50000;
const int maxm=20000;
const int inf=2000000000;
int n,m,k,ans;
struct data//记录每次旅行的信息
{
int l,r,lim;
bool operator <(const data &other) const
{
return (r!=other.r)?r<other.r:l>other.l;
}
};
struct tree//线段树
{
int val[(maxn<<2)+10],lazy[(maxn<<2)+10];
int updata(int now)
{
return val[now]=std::min(val[now<<1],val[now<<1|1]);
}
int pushdown(int now)
{
lazy[now<<1]+=lazy[now];
val[now<<1]+=lazy[now];
lazy[now<<1|1]+=lazy[now];
val[now<<1|1]+=lazy[now];
lazy[now]=0;
return 0;
}
int build(int now,int left,int right)
{
if(left==right)
{
val[now]=k;
return 0;
}
int mid=(left+right)>>1;
build(now<<1,left,mid);
build(now<<1|1,mid+1,right);
updata(now);
return 0;
}
int ask(int now,int left,int right,int askl,int askr)
{
pushdown(now);
if((left>askr)||(right<askl))
{
return inf;
}
if((left>=askl)&&(right<=askr))
{
return val[now];
}
int mid=(left+right)>>1;
return std::min(ask(now<<1,left,mid,askl,askr),ask(now<<1|1,mid+1,right,askl,askr));
}
int change(int now,int left,int right,int askl,int askr,int addval)
{
pushdown(now);
if((left>askr)||(right<askl))
{
return 0;
}
if((left>=askl)&&(right<=askr))
{
lazy[now]+=addval;
val[now]+=addval;
return 0;
}
int mid=(left+right)>>1;
change(now<<1,left,mid,askl,askr,addval);
change(now<<1|1,mid+1,right,askl,askr,addval);
updata(now);
return 0;
}
};
data d[maxn+10];
tree t;
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1; i<=n; i++)
{
scanf("%d%d%d",&d[i].l,&d[i].r,&d[i].lim);
d[i].r--;
}
std::sort(d+1,d+n+1);
t.build(1,1,m);
for(int i=1; i<=n; i++)
{
int tt=t.ask(1,1,m,d[i].l,d[i].r);
//tt代表当前区间最多能上几头牛
if(tt>d[i].lim)
{
tt=d[i].lim;
}
if(tt>0)
//如果这一批牛能够上车
{
t.change(1,1,m,d[i].l,d[i].r,-tt);
//将当前区间的值减去能够上车的牛的数量
ans+=tt;
//更新答案
}
}
printf("%d\n",ans);
return 0;
}