BZOJ 2595 [Wc2008]游览计划

题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=2595

思路

斯坦纳树裸题了。

不会斯坦纳树?到时候我可能会写篇博客吧。

代码

#include <cstdio>
#include <queue>
#include <algorithm>
#include <cstring>

typedef std::pair<int,int> pii;
typedef std::pair<pii,int> piii;

const int maxk=10;
const int maxn=100;
const int maxm=20000;
const int inf=0x3f3f3f3f;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};

int read()
{
  int x=0,f=1;
  char ch=getchar();
  while((ch<'0')||(ch>'9'))
    {
      if(ch=='-')
        {
          f=-f;
        }
      ch=getchar();
    }
  while((ch>='0')&&(ch<='9'))
    {
      x=x*10+ch-'0';
      ch=getchar();
    }
  return x*f;
}

int a[maxk+2][maxk+2],f[maxk+2][maxk+2][(1<<maxk)+10],n,m,vis[maxk+2][maxk+2],tot;
piii pre[maxk+2][maxk+2][(1<<maxk)+10];
std::queue<pii> q;

inline int spfa(int sta)
{
  while(!q.empty())
    {
      pii u=q.front();
      q.pop();
      for(int i=0; i<4; ++i)
        {
          int nx=u.first+dx[i],ny=u.second+dy[i];
          if((nx<=0)||(nx>n)||(ny<=0)||(ny>m))
            {
              continue;
            }
          if(f[nx][ny][sta]>f[u.first][u.second][sta]+a[nx][ny])
            {
              f[nx][ny][sta]=f[u.first][u.second][sta]+a[nx][ny];
              pre[nx][ny][sta]=std::make_pair(u,sta);
              if(!vis[nx][ny])
                {
                  vis[nx][ny]=1;
                  q.push(std::make_pair(nx,ny));
                }
            }
        }
      vis[u.first][u.second]=0;
    }
  return 0;
}

int search(int x,int y,int sta)
{
  if(f[x][y][sta]==inf)
    {
      return 0;
    }
  vis[x][y]=1;
  piii tmp=pre[x][y][sta];
  search(tmp.first.first,tmp.first.second,tmp.second);
  if((tmp.first.first==x)&&(tmp.first.second==y))
    {
      search(tmp.first.first,tmp.first.second,sta-tmp.second);
    }
  return 0;
}

int main()
{
  n=read();
  m=read();
  memset(f,63,sizeof f);
  for(int i=1; i<=n; ++i)
    {
      for(int j=1; j<=m; ++j)
        {
          a[i][j]=read();
          if(!a[i][j])
            {
              f[i][j][1<<(tot++)]=0;
            }
        }
    }
  for(int sta=1; sta<1<<tot; ++sta)
    {
      for(int i=1; i<=n; ++i)
        {
          for(int j=1; j<=m; ++j)
            {
              for(int s=sta&(sta-1); s; s=sta&(s-1))
                {
                  if(f[i][j][sta]>f[i][j][s]+f[i][j][sta-s]-a[i][j])
                    {
                      f[i][j][sta]=f[i][j][s]+f[i][j][sta-s]-a[i][j];
                      pre[i][j][sta]=std::make_pair(std::make_pair(i,j),s);
                    }
                }
              if(f[i][j][sta]!=inf)
                {
                  q.push(std::make_pair(i,j));
                  vis[i][j]=1;
                }
            }
        }
      spfa(sta);
    }
  int mx=0,my=0;
  for(int i=1; i<=n; ++i)
    {
      for(int j=1; j<=m; ++j)
        {
          if(!a[i][j])
            {
              mx=i;
              my=j;
              break;
            }
        }
    }
  printf("%d\n",f[mx][my][(1<<tot)-1]);
  search(mx,my,(1<<tot)-1);
  for(int i=1; i<=n; ++i)
    {
      for(int j=1; j<=m; ++j)
        {
          if(!a[i][j])
            {
              putchar('x');
            }
          else if(vis[i][j])
            {
              putchar('o');
            }
          else
            {
              putchar('_');
            }
        }
      putchar('\n');
    }
  return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值