2011年数学建模B题论文

原文档点击

交巡警服务平台的设置与调度

摘  要

本文针对交巡警服务平台的设置与调度问题,建立了双目标优化模型,解决了交巡警服务平台管辖范围问题;建立了双目标优化模型,解决了交巡警服务平台警力合理的调度方案问题;建立了单目标优化模型,解决了确定需要增加平台的具体个数和位置问题;建立了基于层次分析法和熵权法的综合评价模型,解决了分析交巡警服务平台设置方案的合理性问题;建立了双目标优化模型,解决了交巡警服务平台警力资源的最佳围堵问题。

针对问题一第一小问,建立了双目标优化模型,解决了为各平台分配管辖范围问题。首先,运用Floyd算法,得到平台与各路口节点的最短时间矩阵。其次,以平台到达其管辖范围的不同节点的最长时间最小和各平台发案率的方差最小为目标, 尽量能在3分钟内到达和一个平台封锁一个路口为约束条件引入0-1决策变量,建立双目标优化模型。然后, 以最长时间最小小于三分钟,将第一个目标函数做为时间约束条件,将双目标优化模型转化为单目标优化模型。再运用遗传算法进行求解,采用轮盘赌法选择淘汰,得到案发率的方差最优值为58.218,最大出警时间为5.7min,相应的节点为29号节点。以8号平台为例,其管辖的节点为8,33,46。最后,采用灵敏度分析对模型进行分析, 案发率以步长为0.1,向上浮动0.5,得到案发率对工作均衡度灵敏度为1.029,较为灵敏。

针对问题一第二小问,建立了基于粒子群算法的双目标优化模型,解决了警力合理调度问题。首先,以封锁方案最长时间最小和各平台完成总调度距离最短为目标,一个平台封锁一个路口为约束条件,引入0-1决策变量,建立了双目标优化模型,以各平台到各路口的距离小于等于最远的平台到路口为约束条件,将双目标优化模型转化为单目标优化模型。再运用粒子群算法进行求解,得到封锁最长时间为8.015分钟,总调度距离最优值为47.779km,封锁的13个节点为12、16、2、14、10、13、11、15、7、9、3、4、1。最后采用贪心算法进行对比检验,得到封锁最长时间为8.7min,与原模型误差较小,验证了结论的合理性。

针对问题一第三小问,建立了基于遗传算法的单目标优化模型,解决了增设平台个数和位置问题。首先,用最大出警时间和工作均衡度定义产出变量,以产出变量最大为目标,建立单目标优化模型。采用问题一第一小问的模型和算法,依次考虑增加1至5个平台的情况,得到最优增设平台个数为4,分别在28,48,90,40号节点。最后采用灵敏度分析对模型进行分析,依次考虑增加14个平台后的情况, 案发率以步长为0.1,向上浮动0.5,得到4个案发率对产出的灵敏度为1.1241.2381.2661.307,较为灵敏。

针对问题二第一小问,建立了基于层次分析法和熵权法的综合评价模型,解决了平台方案是否合理问题。首先,以层次分析法和熵权法分别确定主客观权重,以拉格朗日乘子法得到组合权重为0.267等。再以最大出警时间、工作均衡度、平均人口密度、平均发案率、覆盖率和最大出警率6个指标的值计算6个区的综合评分,得到A区和B区评分为7.782和6.766,明显高于其余4区,说明其余4区不合理。基于问题一第三小问,以C区为例,增设2个平台后两最优值依次从12.68变为8.12,4.49变为3.87,增设3个平台后,变化较小,故在C区增设2个平台,分别为288和314。最后,将六区作为整体考虑,定义需求量变量,进行对比检验,得到平台增设数为5,编号为314、517、388、330和288,结果与原模型一致,验证了结论的合理性。

针对问题二第二小问,建立了双目标优化模型,解决了最佳围堵问题。首先以封锁路口节点数尽量少和封锁时间最小为目标,建立了双目标优化模型。再采用遗传算法求解得到需要对22个路口进行封锁,最长封锁时间为8.980min。最后,采用模拟退火法对模型进行对比检验,得到封锁的路口节点与原模型有81.8%的重合度,验证了结论的合理性

关键词:双目标优化,遗传算法,粒子群算法,贪心算法,熵权法,模拟退火法

一、问题重述

1.1 问题背景

“有困难找警察”,是家喻户晓的一句流行语。警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。每个交巡警服务平台的职能和警力配备基本相同。由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

1.2 问题重述

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:

(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地

对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。

根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加25个平台,请确定需要增加平台的具体个数和位置。

2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究市现有交巡警服务平台设置方案(参见附件)的合理性。如果有明显不合理,请给出解决方案。

如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。

二、问题分析

问题整体思路较为清晰,关联性较强。问题一第一小问是一个典型双目标优化的问题,要综合考虑平台到达其管辖范围的不同路口节点和各交巡警平台的工作量[1]。问题一第二小问同样是一个典型的双目标优化的问题,要综合考虑封锁方案最长时间和各平台完成总调度的距离;问题一第三小问建立在问题一第一小问双目标优化模型的基础之上,可将其转化为一个单目标优化的问题。该问题需要依次考虑增加2至5个平台的情况,可运用问题一第一小问的双目标优化模型,得到各平台的出警时间和工作量均衡度的变化值,以上述两个变量构造产出变量,以产出变量的最大值为目标,建立单目标优化模型。问题二第一小问建立在问题一第一小问双目标优化模型的基础之上,运用问题一第一小问双目标优化模型,可以得到全市六区的分配方案和合理性的评价结果, 可采用基于熵权法的模糊综合评价模型重新划分各平台的管辖范围。问题二第二小问,是一个确定封锁方案的问题,要求确定封锁方案, 就是以封锁区域最小或需要封锁区域内的路口节点数最小为目标, 建立实现全封锁方案的优化模型。

2.1 问题一的分析

问题一第一小问要求为各交巡警服务平台分配管辖范围,尽量能在3分钟内有交巡警到达事发地。要求为20个交巡警服务平台分配管辖范围, 就是要在交通网络赋权图中优化配置各个平台所在节点的辐射范围, 即使得所分配的管辖范围具有合理性。而合理性体现在以下两点:一是让各个平台到各管辖路口的出警时间尽量短,二是让各个交巡警平台的工作量尽量均衡[1], 即使得每个平台所管辖的范围内各路口发生报警案件的次数, 也就是每个平台每天平均出警的总次数尽量均衡。为了解决这个问题, 首先要根据原始数据, 计算出各路口节点的邻接矩阵和节点间的最短路矩阵[2]。以每个平台到所管辖路口节点的最长时间最小为主要目标, 兼顾各平台的工作量 (即出警次数) 尽量均衡的目标, 均衡性指标采用方差来度量。这样就可以建立一个这样就可以建立一个双目标优化模型,通过遗传算法求解该双目标优化模型,即可解决交巡警服务平台分配管辖范围问题[4]。

问题一第二小问要求给出交巡警服务平台警力合理的调度方案,完成对13个目标路口的全封锁。要解决这个问题,即要在交通网络赋权图中选择恰当的交巡警服务平台 (对应的节点) , 对目标节点进行封锁, 使得全封锁完成的时间最短, 让完成全封锁的时间最小化就是这个问题的优化目标[4]。全封锁的时间最短可以从以下两点来衡量: 一是让实现全封锁可能方案的最长时间最小, 二是在保证实现全封锁可能方案的最长时间最小的条件下, 优化调度方案, 使得各个平台完成各自封锁任务的平均时间或总时间最短[3]。首先以可能方案的最长时间最小为目标建立单目标模型, 按要求每个平台最多封锁一个路口, 13个路口的每一个有且仅有一个平台封锁。求解得到封锁方案的最长时间作为一个时间约束, 然后再建立以各个平台完成各自封锁任务的平均时间或总时间最短为目标的指派模型, 求解得到全封锁的最优方案。

问题一第三小问要求根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,在该区内再增加25个平台,确定需要增加平台的具体个数和位置。要求合理地增设25个交巡警服务平台, 即在对应的交通网络赋权图上恰当选择原本没有交巡警服务平台的节点, 将其设置为交巡警服务平台, 并重新对整个A区的平台管辖范围进行再分配。要增设新的交巡警服务平台, 必然会改变原来的交通网络赋权图, 形成一个新的赋权图[5]。该问题就是要选择最优的平台增设方案, 得到一个新的交通网络赋权图, 这也是一个网络优化问题。

2.2 问题二的分析

问题二第一小问要求分析研究市现有交巡警服务平台设置方案的合理性。如果有明显不合理,请给出解决方案。要解决这个问题,可将全市六区分区管理, 即分别视为六个独立的交通网络图, 采用A区分配管辖范围的方法, 分别给出各区的分配方案和合理性的评价结果, 其合理性指标主要考虑最长出警时间、最大出警工作量和工作量的标准差 (均衡性) [6], 从评价指标分析, 找出全市六区明显不合理的区域,对几个不合理的区域按A区增设平台的原则和方法增设交巡警服务平台, 并重新划分各平台的管辖范围。

问题二第二小问要求给出调度全市交巡警服务平台警力资源的最佳围堵方案。考虑到案发后3min接到报警, 同时注意到制定调度方案和实施封锁相应路口也都需要一定的时间[7]。为此, 首先要确定在这段时间内嫌疑人可能逃跑的最大区域, 针对这个区域找出需要封锁的目标路口节点。再利用对A区全封锁问题的解决方法, 合理调度全市的80个平台的警力 (不受区的限制) , 对可能逃跑的区域范围的目标路口进行全封锁即可。

三、基本假设

1、每个交巡警服务平台的警力、职能和基本设施相同;

2、所有交巡警出警的行驶速度都为60 km/h;

3、一个交通路口节点必须且只能被一个交巡警服务平台管辖;

4、每个交巡警平台能且只能封锁一个路口

四、符号说明

            表示节点i与节点j之间的最短距离

               表示从平台i到节点j的最短时间

          表示不大于

的最短路径长度

                表示各顶点之间的最短距离值

                表示顶点

最短路的中间点

     表示第j个平台到第k个出口的距离

                     表示平台的最大出警时间

                表示六个指标对应的综合评价值

                         表示六个指标的数值

                               表示综合评价值

                    表示所有平台最大工作量

五、模型建立与求解

5.1 问题一管辖范围问题的模型建立与求解

问题一管辖范围问题以平台到达其管辖范围的不同节点的最长时间最小值和各平台发案率的方差最小值为目标建立了双目标优化模型,采用遗传算法进行求解,最后做发案率均值与各平台的发案率的方差的灵敏度分析,对原模型进行检验

5.1.1模型建立

5.1.1.1 建立最短时间矩阵

该市中心城区A区的交通网络图(图1,比例为:1︰100000)中:共92个交通路口节点,设置了20个交巡警服务平台。利用A区各节点的坐标,使用图论中Floyd算法,计算节点i与节点j之间的最短距离

,建立距离矩阵

;计算从平台i到节点j的最短时间

,建立最短时间矩阵

5.1.1.2 A区交巡警服务平台划分管辖范围的双目标0-1规划模型

问题一第一小问要求为20个交巡警服务平台分配管辖范围, 就是要在交通网络赋权图中优化配置各个平台所在节点的辐射范围, 即使得所分配的管辖范围是“合理”的。所谓的合理性应该体现在以下两个方面: 一是让各个平台到各管辖路口的出警时间尽量短, 出警时间反映的是平台的快速反应能力, 它是衡量交巡警平台的工作效率、反映交巡警服务平台设置合理性的最重要的因素; 二是让各个交巡警平台的工作量尽量均衡, 即使得每个平台所管辖的范围内各路口发生报警案件的次数, 也就是每个平台每天平均出警的总次数尽量均衡,本文的均衡性指标采用方差来度量。

结合实际情况,以各平台到达管辖节点的时间最短和各平台管辖的节点发案数之和尽量均衡为目标,建立双目标0-1规划模型。引入0-1变量

,用来描述路口节点j是否划归平台i管辖的情况,即:

因为每个交通路口节点只能被一个交巡警服务平台管辖,则有:

为了尽量能在最短的时间内有交巡警到达,用所有平台到达其管辖范围的不同路口节点的最长时间最小值为目标,即第一个目标函数为:

                                         (1)

记节点

的发案率为

,则交巡警服务平台管辖范围总发案率的平均值为

                                               (2)

考虑到各平台管辖范围的总发案率要基本均衡,以各平台的发案率的方差为第二个目标函数,即:

                                  (3)

综上所述,以平台到达其管辖范围的不同节点的最长时间最小值和各平台发案率的方差最小值为目标函数,建立各交巡警服务平台分配管辖范围的双目标优化模型如下:

,

                     (4)

5.1.1.3 将双目标规划模型转化为单目标规划模型

根据题目要求各交巡警服务平台尽量能在3分钟内有交巡警到达事发地,将第一个目标函数作为新的约束条件,将双目标规划模型转化为单目标规划模型。再根据每个交通路口节点只能被一个交巡警服务平台管辖等约束条件建立单目标规划模型,模型如下:

                                         (5)

5.1.2模型求解

5.1.2.1 Floyd算法求解最短时间矩阵

Floyd算法允许赋权图中包含负权的边或弧,但是,对于赋权图中的每个圈C,要求圈C上所有弧的权总和为非负。而Dijkstra算法要求所有边或孤的权都是非负的。Floyd 算法包含三个关键算法;求距离矩阵、求路径短阵、最短路查找算法。

设所考虑的赋权图

,其中顶点集

,邻接矩阵

这里

         

对于无向图,

是对称矩阵,

(一)求距离矩阵的算法

通常所说的Floyd算法,一般是指求距离矩阵的算法,实际是一个经典的动态规划算法,其思想是递推产生的一个矩阵序列

,其中矩阵

,其第

行第

列元素

表示从顶点

到顶点

的路径上所经过的顶点序号不大于

的最短路径长度。

计算时用迭代公式

,

是迭代次数,

。最后,当

时,

即是各顶点之间的最短距离值。

(二)建立路径矩阵的算法

如果在求得两点间的最短距离时还需要求得两点间的最短路径,则需要在上面距离矩阵

的迭代过程中引入一个路由矩阵

来记录两点间路径的前驱后继关系,其中

表示从顶点

的路径经过编号为

的顶点。

路径矩阵的迭代过程如下:

(1)初始时

                                                (6)

(2)迭代公式为

                                           (7)

其中

直到迭代到

,算法终止。

(三)最短路的路径查找算法

查找

最短路径的方法如下:

,则顶点

是顶点

最短路的中间点,然后用同样的方法再分头查找。若向顶点

反向追踪得

,向顶点

正向追踪得

,则由点

的最短路径为

综上所述,求距离矩阵

和路径矩阵

的Floyd算法如下:

第一步,初始化,

,令

第二步,迭代

,对

,若

,则令

;否则

不更新。

第三步,算法终止条件,如果

,则算法终止;否则,转第二步。

Floyd算法的时间复杂度为

,空间复杂度为

。求解得到最短时间矩阵(见附录)。

5.1.2.2 遗传算法求解单目标规划模型

基于模型求解的速度和计算量的考虑,我们在这里,再利用遗传算法对上达的模型寻求更好的可行解,希望能我到更好的对现有平台的管辖范围的分配方案。根据遗传算法的特点求解步骤如下:

(1)根据“尽可能在三分钟内有交巡警到达事发地”的要求,建立一个长度为582的规划状态空间数据库中的结构向量

。此时要求满足:

1. 对于三分钟的警车车程范围内有平合的节点

,将所有在其三分钟内可以到达的节点标号列入

之中;

2. 对于三分钟车程范围内没有平合的节点

,将距离其最近的两个平台的标号列入

之中;

3. 对于设有平台的节点之,仅將本节点(或者本平台)的标号记入

之中.

(2)初始化(编码)。设置基因编码的长度为582,即设置一个长度为582的向量,每一项标识一个路口节点,每一项的内容记录节点所归属的平台标号。根据规则库

随机生成若干个初始群体。

(3)计算目标函数。目标函数即为在全市现有交巡警服务平台的设置情况下,各个平台工作量的均衡程度:

                                         (8)

       其中

是0-1变量,表示第

个平台是否管辖第

个节点;

为第

个节点的案发率;

(4)计算个体适应度。个体适应度函数即取模型的目标函数,由于软件中的策略是个体适应度越小越符合要求,所以直接令个体适应度等于目标函数。

(5)进行选择淘汰。采用赌轮盘选择法选择,因为这种方法较易实现。

(6)个体交叉。群体中的每个个体之间都以一定的概率

交叉,即交换长为582的向量部分序列,从而得到新的向量。

(7)发生变异。每个个体向量基因的每一位都以一定的概率发生变异,在可能的规划空间里生成一种新的基因,

判断本次算法的目标函数值与上一次目标函数值的之差

小于

时,遗传不再进行,直至设置的循环次数结束:若

始终大于

时,则执行遗传过程直至循环次数结束。

采用遗传算法求解模型,求解可得各平台的发案率的方差最优值为58.2175,其最大出警时间

为5.7分钟,相应的节点为29号节点。

5.1.3 问题结论

根据求得的结果给出全区路口节点的分配方案如下表所示:

表1  20个交巡警服务平台的有效管辖分配方案

平台标号

该平台所管辖的节点个数

归属该平台的节点标号

平台到节点所用路程总和/km

1

10

1,67,68,69,71,73,74,75,76,78

8.976919

2

7

2,39,40,43,44,70,72

9.811746

3

5

3,54,55,65,66

6.900963

4

6

4,57,60,62,63,64

6.924490

5

9

5,49,50,51,52,53,56,58,59

11.314550

6

1

6

0

7

6

7,30,32,47,48,61

8.484299

8

3

8,33,46

1.757701

9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨墨祺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值