数学建模论文 ——中小微企业的信贷决策

原文档点击

中小微企业的信贷决策

本文针对中小微企业的信贷决策问题,建立了基于层次分析法的信贷策略优化模型,解决了银行对 123 家企业贷款金额分配的问题。构建了 0-1 整数规划的信贷策略模型,实现了无信贷记录企业贷款金额的分配。建立了基于道格拉斯函数的信贷调整策略模型,制定了突发情况下一亿元信贷额度的分配方案。

针对问题一,建立了基于层次分析法的信贷策略优化模型,解决了银行对 123 家企业贷款金额分配的问题。首先,对数据进行筛查,保留有效发票的资金来往数据,并根据进项、销项发票信息,剔除利润率异常的企业;其次,由信誉评级、月利润公差、利润率、利润金额和销售金额构造判断矩阵,基于层次分析法得出各因素的权重系数,进而完成对各企业的综合评分,实现信贷风险量化分析。再次,运用 K 均值聚类分析法对综合评分进行聚类分析,将企业划分为十个类别;最后,以银行获利最大构建信贷策略最优化模型,最终利用遗传算法实现模型的求解。结果显示:共 60 家企业获得贷款,占 48.8%,其中,获得 100 万元贷款的企业共计 1 家,占 1.6%,贷款利率为 5.84%;获得 10 万元贷款的企业共计 28 家,占 46.7%,贷款利率为 6.56%。经计算银行的平均收益率为 4.33%。在此基础上,将企业进一步细分为二十个类别,对贷款额度进行重新分配,结果显示银行的平均收益率为 4.36%,因此,类别的细分对收益率变化影响较小,验证了信贷策略结果的可靠性。

针对问题二,构建了 0-1 整数规划的信贷策略模型,实现了无信贷记录企业贷款金额的分配。首先,运用神经网络,构建附件一中销售金额、进项金额与企业信誉评级的关系函数;其次,基于该函数得到无信贷记录企业的信誉评级;再次,利用层次分析法得到五个因素的权重系数,进而得出各企业的风险分析;最后,将贷款金额划分为十个类别并计算出企业的投资指数,以投资指数为目标函数建立 0-1 规划的信贷策略模型。结果显示:银行共对 173 家企业划拨贷款,占 57.2%。其中,获得 100 万元贷款的企业共计 25 家,占 14.45%;获得 10 万元贷款的企业共计 25 家,占获批贷款企业数的 14.45%;银行可获 435.44 万元的利息。最后,小幅度改变判断矩阵中的权重值大小,并重新对模型进行计算,计算结果表明仅有 1%企业贷款金额改变,其余企业贷款金额与原模型一致,检验了分配方案的健壮性。

针对问题三,建立了基于道格拉斯函数的信贷策略调整模型,制定了突发情况下一亿元信贷额度的分配方案。首先,依据附件二中 302 家的企业信息,将企业划分为服务业、运输业、医药类等八大类;其次,以新冠肺炎疫情冲击为例,将国家特殊时期对相关企业的政策支持纳入考虑范畴,并同时网络查阅各行业企业的商业报告数据,分析其销售额和利润走向,以此作为划分的八大类企业在今年的销售额和利润;再次,运用道格拉斯函数计算出每个企业安全的贷款金额范围;最后,建立以银行利润最大化为目标的信贷调整策略模型,并利用隐枚举法进行求解。计算结果表明:银行可获利 429.13 万元,对 6 家医疗企业分别放贷 100 万元,贷款利息为 4%;对受疫情影响较大的 E137 服务类企业放贷 30 万元,贷款利率为 5.84%。最后,利用蒙特卡罗法对模型进行重新求解,解得银行可获得 427.65 万元,变化率为 0.3%,检验了隐枚举法求解的可信性。

 

关键词:层次分析法;K 均值聚类分析;遗传算法;0-1 整数规划;神经网络 

      

一、问题重述

1.1  问题背景

在实际中,由于中小微企业规模相对较小,也缺少抵押资产,因此银行通常是依据信贷政策、企业的交易票据信息和上下游企业的影响力,向实力强、供求关系稳定的企业提供贷款,并可以对信誉高、信贷风险小的企业给予利率优惠。银行首先根据中小微企业的实力、信誉对其信贷风险做出评估,然后依据信贷风险等因素来确定是否放贷及贷款额度、利率和期限等信贷策略。

1.2  问题条件

某银行对确定要放贷企业的贷款额度为10~100万元;年利率为4%~15%;贷款期限为1年。附件 1~3 分别给出了 123 家有信贷记录企业的相关数据、302 家无信贷记录企业的相关数据和贷款利率与客户流失率关系的 2019 年统计数据。

1.3  问题内容

该银行请你们团队根据实际和附件中的数据信息,通过建立数学模型研究对中小微企业的信贷策略,主要解决下列问题:

(1)对附件 1 中 123 家企业的信贷风险进行量化分析,给出该银行在年度信贷总额固定时对这些企业的信贷策略。

(2)在问题 1 的基础上,对附件 2 中 302 家企业的信贷风险进行量化分析,并给出该银行在年度信贷总额为 1 亿元时对这些企业的信贷策略。

(3)企业的生产经营和经济效益可能会受到一些突发因素影响,而且突发因素往往对不同行业、不同类别的企业会有不同的影响。综合考虑附件 2 中各企业的信贷风险和可能的突发因素(例如:新冠病毒疫情)对各企业的影响,给出该银行在年度信贷总额为 1 亿元时的信贷调整策略。

                                                 二、问题分析

该题属于综合评价优化分析类问题,主要研究如何在复杂的社会环境中,制定科学严谨的信贷策略来解决对中小微企业的放贷问题,共分为三个问题。问题一要求在银行年度信贷总额固定时,对 123 家有信贷记录的企业的信贷风险进行量化分析后,制定合理的信贷策略来解决的放贷问题。问题二是在问题一的基础上,要求对 302 家无信贷记录企业的信贷风险进行量化分析,以一亿元年度信贷固定总额为前提,解决对这些无信贷记录企业的放贷资金分配问题。问题三是在问题一、问题二的基础上进一步拓展,要求更加周密的考虑一些突发因素对企业的生产经营效益的影响,并对上述解决问题二的策略作出调整,来更好的解决对 302 家无信贷记录的中小微企业的放贷问题,更加人性化,贴合实际情况,助力企业渡过难关。综上所述,这三个问题属于层层递进,步步深入的关系。

2.1  问题一的分析

   问题一属于综合评价方面的建模类型,需要设计在信贷总额固定时,对企业的信贷策略。这一类问题有主成分分析法、层次分析法[1]、因子分析法进行解决。根据这一题条件,比较适宜选择层次分析法。首先,因作废发票的数据与结果无关,所以将剔除进项发票中的作废发票,保留有效发票的资金来往数据;其次,将根据信用评级、月利润公差、利润率、利润金额、销售金额五个因素的重要程度来构造判断矩阵,通过层次分析法计算出符合一致性检验的各元素权重;再次,依据附件 1 的数据计算出五个因素的值并结合生活实际,制定标准,将利润率明显不合理的企业剔除。具体标准为:筛选出利润率大于 50 倍的企业,该部分中,信誉评级为 C 和 D 的一律剔除;对于利润率大于 50 倍,小于 100 倍的企业,保留信誉评级为 A 和 B 的;对于利润率大于 100 倍的企业,只保留信誉评级为 A 的。接着,对所有数据进行标准化处理并结合各个因素所占的权重对各个企业进行评分,运用K均值聚类分析法对综合评分进行 K 均值聚类分析[2],将企业划分为十个类别;最后,以银行利益最大化为目标完成各企业贷款资金分配的设计。最后,运用遗传算法[3],以银行利益最大化为目标来完成各企业贷款资金分配的设计。根据这个模型可制定出银行对有借贷记录企业的借贷方案,并实现利益最大化。为验证策略的合理性,不妨再次使用K均值聚类分析法进行检验。

2.2  问题二的分析

问题二在问题一的基础上要求对 302 家无信贷记录的企业进行量化分析并完成贷款资金的分配。其难点有两处:第一处,302 家企业无信贷记录,无法知道这些企业的信誉评级,不能对信贷风险进行量化分析;第二处,问题一没有给出具体的银行年度贷款的总额,而问题二给出的银行年度贷款总额为一亿元,这就需要银行更好的把控企业的贷款额度。首先,将运用 K 近邻算法[4],构建了附件一中的销售金额、进项金额与企业信誉评级的函数;其次,将根据信用评级、月利润公差、利润率、利润金额、销售金额五个因素的重要程度来构造判断矩阵,通过层次分析法计算出符合一致性检验的各因素权重。再次,依据附件 1 的数据计算出五个因素的值并结合生活实际,制定标准,将利润率明显不合理的企业剔除。具体标准为筛选出利润率大于1000倍的企业,该类企业一律剔除;对于利润率大于100倍,小于1000 倍的企业,保留信誉评级为A和B的。接着,对所有数据进行标准化处理并结合各个因素所占的权重对各个企业进行综合评分。最后,将企业划分为 10 个类别并计算出投资指数,投资指数=利润×综合评分,以投资指数最大为目标函数,以使得目标函数最大为优化,再利用 0-1 规划[5]得到贷款金额分配方案。最后,重新评估五个因素的重要程度,调整判断矩阵,从而改变权重系数,对标准化数据和投资策略进行检验。

2.3  问题三的分析

问题三是在问题二模型制定的信贷策略的基础上,将考虑一些突发因素可能会对不同行业、不同类别的企业的生产经营产生影响,为此合理的调整信贷策略必不可少。首先,将 302 家无信贷记录企业划分为个体经营、建筑业、制造业、服务业、运输业、科技类、贸易类、医药类八类;为更好的抗击新冠肺炎,将依据国家相关政策对医药类企业给予最大的贷款利率优惠和最大的贷款额度,即给予医疗类企业 100 万元贷款额度和 4%的贷款利率;其次,将查阅企业的财务报表,在每一个类别种选取一批具有代表性的企业,计算出其销售额和利润走向,据此预测各企业在今年的销售额和利润。考虑到疫情期间出现了较为明显的通货膨胀,此处将通过查阅中国人民银行公布的疫情期间的通货膨胀率并将其计算在内,以保证贷款策略的合理性;再次,运用道格拉斯函数[6]计算出每个企业贷款最大金额,可运用 0-1 规划,对剩余的 296 家企业以银行利润最大化为目标放贷。计算可得出银行收益及方案。最后,利用蒙特卡罗法对模型进行重新求解,检验隐枚举法求解可信。

三、模型假设

1.假设企业不存在偷税、漏税情况;

2.假设所有企业的资金需求都高于一百万元人民币;

3.假设表格中所有数据真实可信;

4.假设所有企业在一年贷款期内稳健经营;

5.未来经济形势与近几年相近;

四、符号说明

𝐶𝑟:表示企业信誉度;

𝑃𝑟:表示企业利润率;

𝑆𝑡:表示月利润标准差;

𝑦𝑝:表示企业年利润;

𝐶𝑠:表示企业年销售额;

𝐶:表示进项金额;

𝐿𝑟:表示贷款利率;

𝐿:表示贷款金额;

𝐷𝑟:表示客户流失率;

 W:表示标准化处理后的数据;

𝐺:表示企业的综合评分;

𝐿𝑚𝑎𝑥:表示企业接受的最大贷款额度;

𝑃:表示该企业员工人数;

五、模型的建立与求解

5.1  问题一的模型建立与求解

首先,对数据进行清洗,保留有效发票的资金来往数据,并根据进项、销项发票信息,剔除利润率明显不合理的企业;其次,依据发票中的数据,计算出信誉评级、月利润公差、利润率、利润金额、销售金额五个因素的值;其次,根据上述五个因素的重要程度,构造判断矩阵,通过层次分析法得出符合一致性检验的各因素权重系数,进而得到各企业的综合评分。再次,运用 K 均值聚类分析法对综合评分进行聚类分析,将企业划分为十个类别;最后,运用遗传算法,以银行利益最大化为目标完成各企业资金分配的设计。结果显示:信誉评级为 A 的企业贷款利率为 5.84%,信誉评级为 B 的企业贷款利率为 6.56%,信誉评级为 C 的企业贷款利率为 4.74%。运用 K 均值聚类分析法对综合评分进行聚类分析,将企业更加细化地划分为二十个类别,进行资金分配设计来检验。

5.1.1  模型的建立

5.1.1.1  问题一第一小问的模型建立

1.层次分析的一般方法

层次分析法解决问题的基本思想与人们对一个多层次、多因素、复杂的决策问题的思维过程基本一致,最突出的特点就是分层比较,综合优化。其解决问题的基本步骤如下:

(1)分析系统中各因素之间的关系,建立系统的递阶层次结构,一般层次结构分为三层,第一层为目标层,第二层为准则层,第三层为方案层;

(2)构造两两比较矩阵(判断矩阵),对于同一层次的各因素关于上一层中某一准则(目标)的重要性进行两两比较,构造出两两比较的判断矩阵;

(3)由于比较矩阵计算被比较因素对每一准则的相对权重,并进行判断矩阵的一致性检验;

(4)计算方案层对目标层的组合权重和组合一致性检验,并进行排序。

2.层次结构图

利用层次分析法研究问题时,首先要把各种与问题有关的各种因素层次化,然后构造出一个树状结构的层次结构模型,称为层次结构图。一般问题的层次结构图分为三层:

(1)最高层为目标层(O):问题决策的目标或理想结果,只有一个元素。

(2)中间层为准则层(C):包括为实现目标所涉及的中间环节各因素,每一因素为一准则,当准则多于 9 个时可分为若干个子层。

(3)最低层为方案层(P):方案层是为实现目标而选择的各种措施,即为决策方案。

一般来说,各层次之间的各因素,有的相关联,有的不一定相关联;各层次的因素个数也未必一定相同。实际中,主要是根据问题的性质和各相关因素的类别来确定。

3.比较矩阵的构造

构造比较矩阵主要是通过比较同一层次上的各因素对上一层相关因素的影响作用,而不是把所有因素放在一起比较,即将同一层的各因素进行两两相比。同时,

要尽量依据实际问题的具体情况,减少由于决策人主观因素对结果造成的影响。

设要比较𝑛个因素𝑐1, 𝑐2, ⋯ , 𝑐𝑛对上一层(如目标层)𝑂的影响,即要确定它在𝑂中所占的比重。

对任意两个因素𝑐𝑖和𝑐𝑗 ,用𝑎𝑖𝑗表示𝑐𝑖和𝑐𝑗对𝑂的影响程度之比,按1~9的比例标度来度量𝑎𝑖𝑗(𝑖, 𝑗 = 1,2, ⋯ , 𝑛).于是,可得到两两成对比较矩阵𝐴 = (𝑎𝑖𝑗)𝑛×𝑛,又称为判断矩阵,显然

 

因此,又称判断矩阵为正反互联矩阵。

比例标度的确定:𝑎𝑖𝑗1~9的9个等级,而, 𝑎𝑗𝑖取𝑎𝑖𝑖的倒数(如表 5-1)。

表 5-1  比例标度值

标度

含义

1

𝑐𝑖与𝑐𝑗的影响相同

3

𝑐𝑖比𝑐𝑗的影响稍强

5

𝑐𝑖比𝑐𝑗的影响强

7

𝑐𝑖比𝑐𝑗的影响明显地强

9

𝑐𝑖比𝑐𝑗的影响绝对地强

2,4,6,8

𝑐𝑖与𝑐𝑗的影响之比在上述两个相邻等级之间

1/2,…,1/9

𝑐𝑖与𝑐𝑗的影响之比为𝑎𝑖𝑗上面的倒数

由正互反矩阵的性质可知,只要确定𝐴的上(或下)三角的

个元素即可。

在特殊情况下,如果判断矩阵𝐴的元素具有传递性,即满足:

𝑎𝑖𝑘𝑎𝑘𝑗 = 𝑎𝑖𝑗(𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛) 则称𝐴为一致性矩阵,简称一致阵。在实际中,层次分析法应用的效果如何,比较矩阵的合理性起着决定性作用。因此,对于应用中比较矩阵的确定要尽量减少其主观性,增加其客观性。任意两个元素的比较结果都应该给出详实的说明,或经过专家咨询和论证来确定。

4.相对权重向量的确定

通常确定相对权重的方法都是近似的,常用的有合法求根法和特征根法等。

(1)和法:

取判断矩阵

个列向量归一化后的算术平均值,近似作为权重,即:

 

类似地,也可以对按行求和所得向量作归一化,得到相应权重向量。

(2)求根法(几何平均法):

将判断矩阵

的各列(或行)向量求几何平均后归一化,可以近似作为权重,即:

 

(3)特征根法:

设想把一块大石头

分成

个小块

,其重量分别为

,则将

块小石头两两比较,记

的相对质量为

,于是可得到比较矩阵:

 

显然,

为一致性正互反矩阵,记

,即为权重向量。且:

则:

 

这表明

为矩阵

的特征向量,且

为特征根。

   对于一般的判断矩阵

,

为 A 的最大特征根,W 为

对应的特征向量。

作归一化后可近似地作为

的权重向量,这种方法称为特征根法(这是一种最常用的方法)。

由线性代数的知识,如果

为一致的正互反矩阵,则有下列性质:

  1.  ,即

    的每一行(或列)均为任一指定行(或列)的整数倍;
  2. 的最大特征根为

    ,其余的特征根均为 0;

(3)若

的最大特征根

对应的特征向量为:

 

 

则:

 

由此可得定理:n阶正互反矩阵𝐴 = (𝑎𝑖𝑗)𝑛×𝑛是一致性的充要条件𝜆𝑚𝑎𝑥 = 𝑛

5.一致性检验

   通常情况下,由实际得到的判断矩阵不一定是一致的,即不一定满足传递性。实际中,也不必要求一致性绝对成立,但要求大体上是一致的,即不一致的程度应在容许的范围内。主要考察以下指标;

(1)一致性指标:

 

(2)随机一致性指标:𝑅𝐼,通常由实际经验给定,如表 5-2 所示:表 5-2  随机一致性指标

1

1

2

3

4

5

6

7

8

9

1

0

1

1

1

2

R

I

0

0

0

.58

0

.90

1

.12

1

.24

1

.32

1

.41

1

.45

1

.49

1

.51

1

.54

(3)一致性比率指标:

 

当𝐶𝑅 < 0.10时,认为判断矩阵的一致性是可以接受的,则𝜆𝑚𝑎𝑥对应的特征向量可以作为排序的权重向量。此时:

 

其中,(𝐴𝑊)𝑖表示𝐴𝑊的第𝑖个分量。

6.数据清洗

数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等

7.数据标准化

数据标准化是企业或组织对数据的定义、组织、监督和保护进行标准化的过程。数据标准化分为开发(D)、候选(C)、批准(A)、驳回(R)、归档(X)几个过程。

数据标准化的分类有Min − max 标准化和z − score 标准化。

z − score标准化:这种方法基于原始数据的均值和标准差进行数据的标准化。将 A 的原始值x使用z − score标准化到𝑥′。z − score标准化方法适用于属性 A 的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。

步骤如下:

(1)求出各变量(指标)的算术平均值(数学期望)𝑥𝑖和标准差𝑠𝑖;

(2)进行标准化处理:

 

其中:𝑧𝑖𝑗为标准化后的变量值;𝑥𝑖𝑗为实际变量值。

(3)将逆指标前的正负号对调:

  标准化后的变量值围绕 0 上下波动,大于 0 说明高于平均水平,小于 0 说明低于平均水平。

5.1.1.2  问题一第二小问的模型建立

1.𝐊均值聚类分析

K 均值聚类分析[7]是一种迭代求解的聚类分析算法,其步骤是,预将数据分为 K 组,则随机选取 K 个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。

如果用数据表达式表示,假设簇划分为(𝐶1,𝐶2 ⋯ ⋯ 𝐶3),则我们的目标是最小化平方误差𝐸:

𝑘

2

𝐸 = ∑ ∑||𝑥 − 𝜇𝑖||2

其中𝜇𝑖是簇𝐶𝑖的均值向量,有时也(𝑖=1)称为(𝑥𝜖𝐶𝑖)质心,表达式为:

 

如果我们想直接求上式的最小值并不容易,这是一个 NP 难的问题,因此只能采用启发式的迭代方法。

2.傅立叶变换拟合

离散傅立叶拟合法是基于离散傅立叶变换的谐波分析法,可对呈周期性波动

NDVI 时间序列的波动特征进行分析,并可对高噪声的 NDVI 时间序列数据进行降噪。

非对称高斯函数拟合法是使用分段高斯函数(曲线)组合来模拟植被季相生长(物候)规津,一个组合代表一次植被盛衰过程,最后通过平滑连接各高斯拟合曲线,实现时间序列重建。具体过程包括:区间提取(在时间维选择一最大值或最小值区间作为局部拟合区间)、局部拟合(使用高斯拟合函数对局部区间数据进行拟合)、整体连接(将局部拟合结果合并)。

3.遗传算法

遗传算法[8]为一种基于自然选择原理和自然遗传机制的搜索算法,它是模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。遗传算法的实质是通过群体搜索技术,根据适者生存的原则逐代进化,最终得到最优解或准最优解。它必须做以下操作:初始群体的产生、求每一个体的适应度、根据适者生存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染色体的基因并随机变异某些染色体的基因生成下一代群体

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨墨祺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值