
NLP论文解读
文章平均质量分 96
一支王同学
Wang Linyong,南京邮电大学本科,计算机科学与技术;西北工业大学研究生(在读),计算机技术
;目前已做过的研究方向:文本分类(竞赛)、文本匹配(竞赛)、命名实体识别(横向)、摘要生成(主要研究方向)、大语言模型文本生成(纵向)。
座右铭:内心的热爱抵过外界的狂欢。
展开
-
论文精读《ShareGPT4Video: Improving Video Understanding and Generation with Better Captions》
这是一篇2024年发表在NIPS上的,关于多模态大模型的论文。本文开发了一个高质量的视频字幕数据集ShareGPT4Video和一个视频-语言多模态领域先进而通用的模型ShareCaptioner-Video。原创 2025-03-17 21:54:03 · 779 阅读 · 0 评论 -
论文精读《AuroraCap: Efficient, Performant Video Detailed Captioning and a New Benchmark》
本文首先介绍了AuroraCap,一种基于大型多模态模型的高效视频细节描述器。通过利用tokens合并策略,在不影响性能的情况下显著降低了计算开销。本文还提出了VDC,一个新的视频详细描述基准,旨在评估视频内容的全面和连贯的文本描述。为了更好地评估,本文提出VDCscore,一种新的基于分而治之策略的LLMs辅助评价指标。对各种视频和图像描述基准的广泛评估表明,AuroraCap取得了有竞争力的结果,甚至在某些任务中超过了最先进的模型。原创 2025-03-11 21:15:11 · 685 阅读 · 0 评论 -
DeepSeek 系列模型:论文精读《A Survey of DeepSeek Models》
这篇文章概述了Deepseek 及其变体,包括 DeepSeek 7B、DeepSeek MoE-16B、DeepSeek V2、DeepSeek V3、DeepSeek R1-Zero 和 DeepSeek R1,还概述了相关的大语言模型,包括 OpenAI GPT、Claude 3.5、LLama 3.1、Qwen 2.5、Gemini 2.0,并将它们进行了系统的比较。原创 2025-03-04 21:29:34 · 846 阅读 · 0 评论 -
提升大语言模型(LLMs)阅读理解能力的经验技巧【增强数据集的方法】
该文分享了如何对中英文问答题进行数据增强的方法【数据预处理工作】,提升了LLMs的推理能力,模型使用的是Llama3-8B。原创 2025-01-16 20:22:49 · 809 阅读 · 0 评论 -
大语言模型(LLMs)数学推理的经验技巧【思维链CoT的应用方法】
该文分享了如何对数学推理运算进行思维链(CoT)的应用【数据预处理工作】,模型使用的是Llama3-8B。原创 2024-12-31 15:49:05 · 1487 阅读 · 0 评论 -
论文解读《LiveChat:A Large-Scale Personalized Dialogue Dataset Automatically Constructed from 在线直播》
本文提出了 LiveChat,一个来自直播领域的中文视频个性化对话数据集,包含详细的人物画像。它保持着最大的每个角色的平均会话数,也是用于收件人识别的最大的MPC数据集,因为直播是一种自然的 MPC 场景。这是由于 reply-to-whom 匹配方法能够从实时视频中自动提取对话会话,而大多数视频提取方法不能。在两个基准任务上的实验结果表明,选择的角色轮廓和每个角色的平均会话次数有利于学习说话人的个性化回复和收件人确认。原创 2024-12-03 13:36:28 · 1076 阅读 · 0 评论 -
论文解读《Recent Trends in Personalized Dialogue Generation: A Review of 数据集, 方法, 和 评估》
论文的完整标题为:《Recent Trends in Personalized Dialogue Generation:A Review of Datasets, Methodologies, and Evaluations》。本文深入研究了个性化对话生成,涵盖数据集、方法和评估技术。原创 2024-11-21 23:04:49 · 948 阅读 · 0 评论 -
论文解读《Towards Lifelong Dialogue Agents via Relation-aware Memory Construction and ......》
论文完整标题:《Towards Lifelong Dialogue Agents via Relation-aware Memory Construction and Timeline-augmented Response Generation》。本文提出了一个基于时间轴的长期对话记忆增强对话代理框架。综合评估表明,THEANINE有助于更有益的增强,使回复更接近真实情况,更符合说话人过去的互动。其有效性在TeaFarm中得到了进一步证实。原创 2024-11-21 00:25:47 · 935 阅读 · 0 评论 -
论文解读《Personalized LoRA for Human-Centered Text Understanding》
本文提出了 PLoRA,一种以人为中心的 PEFT 方法,成功证明了在增强 PLMs 从预训练到下游任务的迁移学习方面的有效性。通过采用 PnP 框架,PLoRA 显著提高了对实际应用冷启动问题的适应能力。在多种个性化情感分析任务上的实验验证了该方法的有效性和高效性。原创 2024-11-17 23:12:32 · 803 阅读 · 0 评论 -
论文解读《Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents》
本文研究了智能体设计中隐式意图理解的增强和评估。引入了交互意图(IN3)基准,以评估智能体从模糊指令中理解隐含意图的能力。本文还开发了 Mistral-Interact,一个开源模型,可以精确识别任务模糊性,寻求澄清并捕获用户意图。将其应用到 XAgent 中,证明了其在代理指令理解和执行方面的有效性。本文工作开创了在智能体设计中整合用户参与和隐式意图理解的先行者,为更强大的交互基准和系统铺平了道路。原创 2024-11-14 12:02:09 · 1410 阅读 · 0 评论 -
论文解读《CTRLsum: Towards Generic Controllable Text Summarization》
当前的摘要系统产生的一般摘要与用户的偏好和期望脱节。为了解决这一限制,论文提出了 CTRLSUM,这是一个通过一组关键字(keywords)控制生成摘要的通用框架。在训练过程中,自动提取关键字,而不需要额外的人工注释。在测试时,CTRLSUM 具有将控制信号映射到关键字的控制函数;通过对控制函数的工程化(engineering),可以将同一个训练好的模型应用于各个维度的可控摘要,同时不影响模型的训练过程,也不影响预训练模型。原创 2024-11-13 11:39:42 · 625 阅读 · 0 评论 -
一文贯通RAG的技术介绍和构建(简易版+附详细代码)
本文主要分为以下几个部分: 1.为什么产生RAG技术?【计算资源问题、提示依赖问题、模型幻觉问题、时效性问题、数据安全问题】2. RAG技术的简要介绍【RAG是一种结合了信息检索、模型能力和文本生成的新型自然语言处理技术框架】;3. RAG技术和SFT技术的对比【RAG 在利用最新信息、提高可解释性和适应性方面具有明显优势。相比之下,微调模型(SFT)可能更适合那些对特定任务有明确优化需求】;4. RAG技术的实现流程【问题理解、信息检索和LLMs调用】;5. 代码实现。原创 2024-10-28 19:37:39 · 3368 阅读 · 1 评论 -
EMNLP 2024 个性化/风格化 文本生成 论文汇总(19篇主会论文)
摘要:简单翻译了一下 19 篇 EMNLP2024 上的 个性化/风格化文本生成相关论文 的标题、摘要,并给出了整体框架图和原文链接。原创 2024-10-23 00:00:42 · 2186 阅读 · 0 评论 -
论文解读《NewsBench:一个评估中文新闻大型语言模型编辑能力的系统评估框架》
论文的题目叫 NewsBench:A Systematic Evaluation Framework for Assessing Editorial Capabilities of Large Language Models in Chinese Journalism。它提出 NewsBench,一个新的评估框架,系统地评估大型语言模型(LLMs)在中文新闻编辑能力方面的能力。原创 2024-09-14 15:38:03 · 1520 阅读 · 0 评论 -
论文解读《LaMP: When Large Language Models Meet Personalization》
本文强调了大型语言模型中个性化的重要性,并介绍了 LaMP 基准(benchmark)——一个用于训练和评估语言模型以产生个性化输出的新基准。LaMP 提供了一个全面的评估框架,具有不同的语言任务和每个 用户画像(user profile) 的多个条目(entries)。它由 7 项个性化任务组成,跨越 3 个文本分类和 4 个文本生成任务。本文还提出 2 种检索增强方法,从每个 用户画像(user profile) 中检索 个人事项(personal items),以个性化语言模型输出。为此,研究了各种检原创 2024-09-13 08:55:01 · 2035 阅读 · 0 评论 -
论文解读《Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security》
关键词:智能个性化助理 · 大型语言模型 · 大型语言模型代理 · 移动设备 · 智能水平 · 任务自动化 · 感知 · 记忆 · 效率 · 安全与隐私原创 2024-09-05 14:00:24 · 1637 阅读 · 0 评论