DDH假设(Decisional Diffie-Hellman assumption)

DDH假设是密码学中的一个重要概念,它涉及到在特定群中区分由公钥元素组成的四元组的困难性。这个假设认为,对于一个大素数阶的群和它的生成元,区分随机四元组和由Diffie-Hellman关系生成的四元组是计算上困难的。这在设计和分析加密算法中起到基础作用,确保了某些攻击在实际计算中是不可行的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DDH假设(Decisional Diffie-Hellman assumption)

DDH假设指的是区分元组 ( g , g x , g y , g x y ) (g,g^x,g^y,g^{xy}) (g,gx,gy,gxy) ( g , g x , g y , g z ) (g,g^x,g^y,g^z) (g,gx,gy,gz)是困难的,具体定义如下:

G G G是阶为大素数 q q q的群, g g g G G G的生成元, x , y , z ← R Z q x,y,z← _RZ_q x,y,zRZq,则以下两个分布:

  • 随机四元组 R = ( g , g x , g y , g x y ) ∈ G q R=(g,g^x,g^y,g^{xy})∈G_q R=(g,gx,gy,gxy)Gq
  • DDH四元组 R = ( g , g x , g y , g z ) ∈ G q R=(g,g^x,g^y,g^{z})∈G_q R=(g,gx,gy,gz)Gq

计算上不可区分的,则称DDH假设。

具体地说,一个敌手A,A区分R和D的优势:
在这里插入图片描述
其中κ是安全参数。


计算不可区分和统计不可区分

可以通过一个随机函数的例子来解释:

假设有三个角色:挑战者,真随机源头,随机数生成算法。
其过程为:
真随机源产生一个真随机数R,
随机函数通过一个算法生成一个随机数R’,
将R和R’同时发送给挑战者,让挑战者区分哪个是真随机源产生的随机数,哪个是随机函数产生的随机数。如果挑战者能够区分两者,则我们说挑战成功。

区分计算不可区分和统计不可区分的关键点在于挑战者的能力。
如果挑战者的能力是无限的,无限能力的挑战者都不能挑战成功那么他就是统计不可区分
如果挑战者的能力是多项式的,多项式能力的挑战者不能挑战成功那么他就是计算不可区分的

随机数中间有很多的统计特性。随着挑战者的能力不断增大,其能够分析的R和R’的统计特性就不断增多:

  • 如果一个挑战者C的能力是:只能够统计0,1的个数。那么当R‘全为1的时候,挑战者能够区分R’和R。当R’为01010101…,01交替出现的时候,那么挑战者C就无法区分R和R‘。

  • 当挑战者的能力到达多项式时,他分析了在此时他的能力下R和R’所有的统计特性,依然无法挑战成功,那么我们就说这是计算不可区分的。(为什么是多项式,因为一般情况下,我们认为超过多项式时间复杂度的算法计算机就没法处理了。)

  • 当挑战者的能力是无限时,也就是说挑战者分析了R和R’所有的统计特性,依然无法挑战成功,那么这个时候,从统计学上(或者说概率分布)来看,那么R和R’就是一回事了,因此叫统计不可区分

参考:
https://blog.csdn.net/weixin_44029550/article/details/111387705
https://zhuanlan.zhihu.com/p/145175617

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值