VGG 网络
VGG 网络的提出目的是为了探究在大规模图像识别任务中,卷积网络深度对模型精确度有何影响;VGG模型是2014年 ILSVRC 竞赛的第二名,第一名是 GoogLeNet。但是 VGG 模型在多个迁移学习任务中的表现要优于 googLeNet。而且,从图像中提取CNN特征,VGG 模型是首选算法。
网络结构
VGG 网络根据卷积核大小和卷积层数目的不同,可分为 A,A-LRN,B,C,D,E
共 6 种配置,其中 D,E
比较常用,分别称为 VGG16
和 VGG19
,以下给出 VGG 的六种配置结构:
- 从左到右每一列代表着深度增加的不同的模型,从上至下代表模型的深度
- 其中:conv<滤波器大小>-<通道数>
- 随着层数增加,参数增加的并不是很多,如下图
以 VGG16 为例,VGG16
:包含:
- 13 个卷积层
- 3 个全连接层
- 5 个池化层,使用 maxpool
VGG16 特点
VGG16 突出的特点就是两个字:简单
1. 卷积层都使用相同大小的卷积核 (3x3)
使用 3 x 3 的卷积核,步幅 stride=1,padding=same,使每一个卷积层与前一层保持相同的高和宽;使用 3 个 3 x 3 的卷积核代替了一个 7 x 7 的卷积核,使参数数量从 49 x C 个降到了 27 X C 个,其中 C 代表通道数。
2. 池化层都使用相同大小的池化核 (2x2)
使用 2×2 的池化核,步幅 stride=2,使用 maxpooling,这样就能够使得每一个池化层的宽和高是前一层的二分之一
VGG16 示意图
3. 块结构
VGG16 的卷积层和池化层可以划分为不同的块,从前到后依次为 Block1~Block5,每一个块包含若干卷积层和一个池化层,如 Block4 包含:
- 3 个卷积层,conv3-512
- 1 个池化层,maxpool
并且在同一块内,卷积层的通道数是相同的,如下图给出按照块划分的 VGG16 的结构图
4. 权重参数
尽管 VGG 的结构简单,但包含的权重数目却很大,达到 138,357,544 个参数,包含卷积核权重和全连接层权重。
- 例如,对第一层卷积,输入图通道数为 3,卷积核参数个数为 3 x 3 x 3,这样的卷积核有 64 个,总共的参数为 3 x 3 x 3 x 64=1728
- 计算全连接层的权重参数:前一层节点数 x 本层的节点数,全连接层的参数分别为:
- 7 x 7 x 512 x 4096 = 1027,645,444
- 4096 x 4096 = 16,781,312
- 4096 x 1000 = 4,097 000
李飞飞在 CS231 的课件中给出了整个网络的全部参数的计算过程(不考虑偏置),如下图所示:
图中蓝色表示计算权重参数数量;红色表示计算所需存储容量的部分。
VGG16 缺点
VGG16 参数规模巨大,可以预期它有很高的拟合能力;但缺点也很明显:
- 训练时间过长,调参难度大
- 需要的存储容量大,不利于部署。如存储 VGG16 权重文件的大小为 500 多 MB,不利于安装到嵌入式系统中。
VGGNet 实践
使用预训练好的 VGG19,查看网络各层对图像的特征提取
import scipy.io
import numpy as np
import os
import scipy.misc
import matplotlib.pyplot as plt
import tensorflow as tf
import cv2
%matplotlib inline
print("所有包载入完毕")
def net(data_path, input_image):
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
)
data = scipy.io.loadmat(data_path)
mean_pixel = [103.939, 116.779, 123.68]
weights = data['layers'][0]
net = {}
current = input_image
for i, name in enumerate(layers):
kind = name[:4]
if kind == 'conv':
kernels, bias = weights[i][0][0][0][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [heights, width, in_channels, out_channels]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = _conv_layer(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = _pool_layer(current)
net[name] = current
assert len(net) == len(layers)
return net, mean_pixel, layers
print("Network for VGG ready")
def _conv_layer(input, weights, bias):
conv = tf.nn.conv2d(
input, tf.constant(weights), strides=(1, 1, 1, 1), padding='SAME')
return tf.nn.bias_add(conv, bias)
def _pool_layer(input):
return tf.nn.max_pool(
input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='SAME')
def preprocess(image, mean_pixel):
return image - mean_pixel
def unprocess(image, mean_pixel):
return image + mean_pixel
def imread(path):
return scipy.misc.imread(path).astype(np.float)
def imsave(path, img):
img = np.clip(img, 0, 255).astype(np.uint8)
scipy.misc.imsave(path, img)
print("Functions for VGG ready")
VGG_PATH = './data/imagenet-vgg-verydeep-19.mat'
IMG_PATH = './images/cat.jpg'
input_image = imread(IMG_PATH)
shape = (1,) + input_image.shape # (h,w,nch) => (1,h,w,nch)
with tf.Session() as sess:
image = tf.placeholder(tf.float32, shape=shape)
nets, mean_pixel, all_layers = net(VGG_PATH, image)
input_image_pre = np.array([preprocess(input_image, mean_pixel)])
layers = all_layers
for i, layer in enumerate(layers):
print("[%d/%d] %s" %(i+1, len(layers), layer))
features = nets[layer].eval(feed_dict={image: input_image_pre})
print( " Type of 'features' is ", type(features))
print( " Shape of 'features' is %s" % (features.shape,))
# Plot response
print(features[0, :, :, 0].shape)
if 1:
plt.figure(i+1, figsize=(10, 5))
plt.matshow(features[0, :, :, 0], cmap=plt.cm.gray, fignum=i+1)
plt.title("" + layer)
plt.colorbar()
plt.show()
以下给出部分网络层的输出