凸优化第八章几何问题 8.4极值体积椭圆

本文探讨了凸优化中的极值体积椭圆问题,包括Lowner-John椭球的概念,如何找到覆盖有限集合的最小体积椭球,以及最大体积内接椭球的问题。此外,还讨论了椭球逼近的效率,特别是Lowner-John椭球和最大体积内接椭球的中心缩放比例在保证覆盖或包含集合时的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8.4极值体积椭圆

  1. Lowner-John椭球
  2. 最大体积内接椭球
  3. 椭球逼近的效率

Lowner-John椭球

包含集合C的最小体积椭球被成为集合C的Lowner-John椭球,记为\varepsilon _{lj},为方便描述\varepsilon _{lj}的特征,将一般的椭球参数化为\varepsilon =\left \{ v|\begin{Vmatrix} Av+b\end{Vmatrix}_2\leq 1 \right \}

即Euclid球在仿射映射下的原象。可以不是一般性地假设A\in S_{++}^n,此时\varepsilon的体积正比于det(A^{-1})。计算包含C的最小体积椭球的问题可以表述为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值