对于一个字节(8 bit)的无符号整形变量,求其二进制表示中“1”的个数,要求算法的执行效率尽可能高、
解法一:通过整形数据除法的特点,通过相除和判断余数的值来分析。
int count(BYTE v) {
int num=0;
while(v) {
if(v % 2 ==1) {
num++;
}
v=v/2;
}
return num;
}
解法二:使用位操作。
向右移位操作同样可以达到相除的目的。唯一不同之处在于,移位之后如何来来判断是否有1存在。在向右移位的过程中,我们会把最后一位直接丢弃。因此,需要判断最后一位是否为1,“与”操作可以达到目的。可以把整个八位的数字与00000001进行“与”操作。如果为1,则表示当前八位数的最后一位为1,否则为0.
int count(Byte v) {
int num=0;
while(v) {
num+= v& 0x01;
v>>=1;
}
return num;
}
时间复杂度为O(log v)
解法三:
如何判断给定的二进制数里面有且仅有一个1呢?可以通过判断这个数是否是2的整数次幂来实现。另外,如果只和这一个“1”进行判断,如何设计操作?我们知道,如果进行这个操作,结果为0或1,就可以得到结论。
如果希望操作后的结果为0,01000000可以与00111111进行“与”操作。
这样,要进行的操作就是01000000 & (01000000-00000001) = 0
int count(Byte v) {
int num=0;
while(v) {
V&=(V-1);
num++;
}
return num;
}
时间复杂度为O(M),其中M是v中1的个数。
解法四:分支操作
空间换时间。
解法五:查表法
典型的空间换时间的算法,将0~255中“1”的个数直接存储在数组中,v作为数组的下标,countTable[v]就是v中“1”的个数。算法时间复杂度为O(1)。