堆排序以及TopK问题

 堆排序

利用数组来实现堆,堆分为小顶堆和大顶堆

小顶堆:父亲节点的值小于左右孩子节点

大顶堆:父亲节点的值大于左右孩子节点 

如果是对数组从小到大排序

(1)为数组构建一个初始大顶堆,则数组的第一个元素就是数组最大的元素

(2)循环N-1一次,每次把数组的最后一个元素与数组第一个元素交换,然后数组长度从后减1,再对新的数组重复第一步,然后在重复第二步,知道数组的长度为1

package xidian.lili.topk;

public class HeapSort {
	/**
	 * 从小到大排序,需要构建大顶堆
	 * @param arr
	 */
	public static void HeapSort(int arr[]){
		//用数组存储堆,从arr.length/2+1开始到后面的节点都是叶子节点
	    //所以从arr.length/2往前构造大顶堆
		int len=arr.length;
		for(int i=arr.length/2;i>0;i--){
			heapAdjust(arr,i,arr.length);
		}
		
		//排序交换第一个元素和最后一个元素,循环n-1次
		for(int i=arr.length-1;i>0;i--){
			int temp=arr[i];
			arr[i]=arr[0];
			arr[0]=temp;
			heapAdjust(arr,0, i);
		}
	}
	/**
	 * 对于当前的parent节点(不是叶子节点),调整结构,使得满足大顶堆结构
	 * @param arr
	 * @param parent
	 * @param length 在排序阶段,每次把堆顶元素和最后一个元素交换,把剩下的元素重新构造对,长度每次减少1
	 */
	private static void heapAdjust(int[] arr, int parent, int length) {
		int temp=arr[parent];
		int child=parent*2+1;
		while(child<length){
			if(child+1<length && arr[child+1]>arr[child]){//左右孩子比较
				child=child+1;
			}
			if(temp>arr[child]){
				break;
			}
			arr[parent]=arr[child];
			parent=child;
			child=parent*2+1;
			
		}
		arr[parent]=temp;
		
	}
	public static void main(String[] args) {
		int[] arr = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
		HeapSort(arr);
		for(int i:arr){
			System.out.println(i);
		}

	}

}

利用堆结构解决TopK的问题,被腾讯的面试官问过一次,有很大的一堆数设为N,然后我们要得到这N个数字中最大的K个数

思路1

(1)首先选取这一堆数字的前k个存到一个k大小的数组

(2)把这长度为k的数组构建成一个小顶堆,也就是数组的第一个元素始终是这个数组中最小的数字

(3)然后对于剩下的N-K和数字遍历,每次比较这个数字与k大小数组的第一个数字,如果比它大,就交换,然后读修改以后的K大小的数组重新进行最小堆的结构调整。一直到把这N和数字遍历完,K大小的数组就是这N个数字中最大的K个

优点:空间复杂度低,每次只需要维护k大小的数组满足最小堆结构

package xidian.lili.topk;

import javax.swing.text.DefaultEditorKit.InsertBreakAction;

//返回一堆数字中最大的k个数字
public class TopK {
	public static void main(String[] args) {
		int[] arr = { 9, 3, 7, 6, 5, 4, 8, 2, 1, 0 };
		int []res= getTopK(arr,3);
		for(int i:res){
			System.out.println(i);
		}

	}
	/*
	 * 创建k个元素的小顶堆
	 */
	public static int[] creat(int arr[],int k){
		int res[]=new int [k];
		for(int i=0;i<k;i++){
			res[i]=arr[i];
		}
		for(int i=k/2;i>=0;i--){
			int temp=res[i];
			int child=i*2+1;
			while(child<res.length){
				if(child+1<res.length && res[child+1]<res[child]){
					child++;
				}
				if(temp<res[child]){
					break;
				}
				res[i]=res[child];
				i=child;
				child=child*2+1;
			}
			res[i]=temp;
		}
		
		return res;
	}
	private static int [] getTopK(int arr[],int k){
		int res[]=creat(arr,k);//k个元素的小顶堆
		int min=res[0];
		for(int i=k+1;i<arr.length;i++){
			if(arr[i]>min){
				insert(res,arr[i]);
			}
		}
		return res;
	}
	private static void insert(int[] res, int value) {
		res[0]=value;
		for(int i=res.length/2;i>=0;i--){
			int temp=res[i];
			int child=i*2+1;
			while(child<res.length){
				if(child+1<res.length && res[child+1]<res[child]){
					child++;
				}
				if(temp<res[child]){
					break;
				}
				res[i]=res[child];
				i=child;
				child=child*2+1;
			}
			res[i]=temp;
		}
		
	}
	
}

 

思路2:利用优先队列

这里我们利用优先队列构建大顶堆,解决求topK小的问题 

优先队列在添加元素的时候是升序的,所以我们根据比较器改变比较规则

package xidian.lili.topk;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.PriorityQueue;
import java.util.Random;
//利用优先队列构件大顶堆,解决topk小
public class PriorityQueueForTopK<E extends Comparable> {

	private PriorityQueue<E> queue;
	private int maxSize;
	public PriorityQueueForTopK (){	}
	public PriorityQueueForTopK (int maxSize){	
		this.maxSize=maxSize;
		this.queue=new PriorityQueue<E>(maxSize,new Comparator<E>(){

			@Override
			public int compare(E o1, E o2) {
				return o2.compareTo(o1);//优先队列默认是升序,这样是降序,构造大顶堆
			}
		});
	}
	public void add(E e){
		if(queue.size()<maxSize){
			queue.add(e);
		}else{
			if(e.compareTo(queue.peek())<0){
				queue.poll();
				queue.add(e);
			}
		}
	}
	//优先队列本来时无序的,可以用list来包装,或者可以每次poll()方法取出数据是有序的
	public  List<E> sortedList(){
		List<E> list=new ArrayList<>(queue);//用list来包装queue,可以调用结合排序
		Collections.sort(list);
		return list;
	}
	public static void main(String[] args) {
		//选出前10个
		PriorityQueueForTopK<Integer> priorityQueueForTopK=new PriorityQueueForTopK<>(10);
		Random random=new Random();
		for(int i=100;i>=0;i--){
			//System.out.print(random.nextInt(1000)+" ");
			//priorityQueueForTopK.add(random.nextInt(1000));
			priorityQueueForTopK.add(i);
			
		}
		
		//for(Integer i:priorityQueueForTopK.sortedList()){
			//System.out.println(i);
		//}
		while(!priorityQueueForTopK.queue.isEmpty()){
			System.out.println(priorityQueueForTopK.queue.poll());
		}
	}

}

topK频率最大的字符串

对于topk问题引申,比如我们在微博上的热门,就是把每次用户搜索的字符串记录下来,热门10分钟更新一次,假设这10分钟内有一千万个记录,我们从这一千万个数据中,找出出现次数最大的10个字符串,那么可以用HashMap加堆来实现。

(1)创建一个HashMap,key代表查询的字符串,value是次数的hash表,插入记录

(2)维护一个大小为K的小顶堆,初始k大小的数组是从hash表中遍历到K的记录,然后继续遍历,每次把得到的元素与堆顶元素,过程就是基于小顶堆topK的过程


topK如果数据量太多,一个数组存不下,可以利用数据的个数N%n,利用这样hash把数据分成n小份,然后每一份又是topK的问题了,然后对于结果就是k*n的数据量,再合起来求topK

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值