【Smooth L1 Loss】FRCNN的box回归为什么采用smooth L1 loss

对于边框的预测是一个回归问题,通常可以选择平方损失函数(L2损失),但是这个损失函数对于比较大的误差的惩罚很高。我们可以采用稍微缓和一点绝对损失函数(L1)损失,它是随误差线性增长的,而不是平方增长。 但是这个函数在0点处的倒数不为唯一,因此可能会影响收敛,一个通常的办法是在0点附近使用平方函数...

2018-12-02 04:15:16

阅读数:9

评论数:0

深度学习F2-Score及其他(F-Score)

在深度学习中,精确率(Precision)和召回率(Recall)是常用的评价模型性能的指标,从公式上看两者并没有太大的关系,但是实际中两者是相互制约的。我们都希望模型的精确了和召回率都很高,但是当精确率高的时候,召回率往往较低;召回率较高的时候精确率往往较低。 往往需要对模型的精确率和召回率做...

2018-11-30 23:30:53

阅读数:6

评论数:0

【LOSS】语义分割的各种loss详解与实现

前言: 在参加Kaggle的比赛中,有时遇到的分割任务是那种背景所占比例很大,但是物体所占比例很小的那种严重不平衡的数据集,这时需要谨慎的挑选loss函数。 Loss: 1.Log loss  log loss其实就是TensorFlow中的  tf.losses.sigmoid_cros...

2018-11-30 11:48:17

阅读数:120

评论数:0

【目标检测Evaluation】F2 Score

This competition is evaluated on the F2 Score at different intersection over union (IoU) thresholds. The IoU of a proposed set of object pixels and a...

2018-11-15 11:40:49

阅读数:33

评论数:0

【解决】ImportError: No module named Cython.Build

ImportError: No module named Cython.Build   python setup.py install

2018-11-12 21:40:20

阅读数:65

评论数:0

【解决】AttributeError: '_NamespacePath' object has no attribute 'sort'

pip3 install --upgrade pip pip3 install --upgrade setuptools

2018-11-12 21:39:36

阅读数:37

评论数:0

【解决】Failed to get convolution algorithm. cudnn可能初始化错误

Tensorflow版本过高

2018-11-12 21:38:44

阅读数:1122

评论数:0

【解决】ValueError: Length mismatch: Expected axis has 0 elements, new values have 2 elements

错误如下: ValueError: Length mismatch: Expected axis has 0 elements, new values have 2 elements 代码: import pandas as pd out_pred_rows = [] sub = pd.Dat...

2018-11-08 16:31:28

阅读数:48

评论数:0

RLE格式标注文件转为PNG格式(Run Length Encode)

一、什么是 RLE 格式 在机器视觉领域的深度学习中,每个数据集都有一份标注好的数据用于训练神经网络。 为了节省空间,很多数据集的标注文件使用RLE的格式,比如 kaggle 挑战赛的 Airbus Ship Detection Challenge。 但是神经网络的输入一定是一张图片,为此必...

2018-11-07 13:17:58

阅读数:31

评论数:0

从一个简单例子入门生成对抗网络GAN

 https://zhuanlan.zhihu.com/p/41993080   一、什么是生成对抗网络 通俗的讲: 对抗网络有一个生成器(Generator),还有一个判别器 (Discriminator); 生成器从随机噪声中生成图片,由于这些图片都是生成器臆想出来的,所以我们称...

2018-11-04 23:58:39

阅读数:61

评论数:0

【K-L散度(相对熵)】如何理解分割模型的损失函数

1、概念 Kullback-Leibler Divergence,即K-L散度。是一种量化两种概率分布P和Q之间差异的方式,又叫相对熵。 先给出结论: 其实我们可以把每张图像都看作是一个像素x的概率分布,那么使用K-L散度就可以量化predict图像和label图像之间的差异。 (其实最开...

2018-11-01 23:15:52

阅读数:29

评论数:0

【NMS】非极大值抑制(Non Maximum Suppression)

在2-stage的物体检测模型中经常会用到NMS,其目的是消除多余的框,找到最佳的物体检测位置。比如在RCNN系列算法中,会从一张图片中找到很多候选框(可能包含物体的矩形边框),每个候选框都有各自的属于前景或背景的概率。 就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要...

2018-11-01 00:03:05

阅读数:4

评论数:0

Mask RCNN源码解读及如何使用自己的数据集进行训练

一、概述 作者使用了Tensorflow,Keras,python3实现了Mask R-CNN。由于作者使用了Keras搭建网络,使用data generator导入数据,所以对于以python实现的网络来说,其性能并不是最优的。之后我会改一版使用tf.estimator 和 tf.data A...

2018-10-21 16:10:45

阅读数:54

评论数:0

Tensorboard从入门到精通(1)——Visualizing Learning

目录   1、概念 2、安装 3、序列化summary数据 4、加载TensorBoard 简单版: 有个要可视化的变量,var首先     tf.summary.scalar('min', tf.reduce_min(var))     tf.summary.histogram...

2018-10-19 22:40:05

阅读数:23

评论数:0

FPN——论文详解

http://cn.arxiv.org/abs/1612.03144 题目:Feature Pyramid Networks for Object Detection 摘要: 特征金字塔是识别不同尺度的目标时常用的结构,但是特征金字塔需要较大的计算量和显存,所以最近研发的一些探测器都不再使用...

2018-10-18 08:56:20

阅读数:41

评论数:0

(Mask RCNN)——论文详解(真的很详细)

论文:http://cn.arxiv.org/pdf/1703.06870v3 本文主要是针对论文的详细解析,选出文章各部分的关键点,方便阅读立即。 目录: 摘要: 1、Introduction 2、Related Work 3、Mask R-CNN 3.1 Implementati...

2018-10-18 00:42:14

阅读数:851

评论数:0

pycharm2018最新激活码--有效期至2019-5

347DQLVO7L-eyJsaWNlbnNlSWQiOiIzNDdEUUxWTzdMIiwibGljZW5zZWVOYW1lIjoi5b285bK4IHNvZnR3YXJlMSIsImFzc2lnbmVlTmFtZSI6IiIsImFzc2lnbmVlRW1haWwiOiIiLCJsaWNlbn...

2018-10-17 09:45:23

阅读数:1617

评论数:1

(深度学习评估指标)——MS COCO detection evaluation metrics

1、概述: 本文介绍MC COCO数据集用到的Metrics 2、Metrics 简介 说明: 1、除非有其他说明,否则AP和AR是多个IoU的平均值,具体来说就是我们使用十个不同的阈值.50:.05:.95。相对于传统只使用单个0.5的阈值相比,这是一个突破。使用平均IoU可以提...

2018-10-12 21:52:56

阅读数:106

评论数:0

(科普)——csdn的排名机制

新版博客将引入博客积分系统,积分是衡量博主博客水平的重要标准,博主总排名将按照博主积分排列。 每发布一篇原创或者翻译的文章:可获得10分——由原来的30分降为10分。 每发布一篇转载文章:可获得2分 博主的文章每被评论一次:可获得1分 每发表一次评论:可获得1分(自己给自己评论、博主回复别...

2018-10-11 15:36:18

阅读数:20

评论数:0

(科普)——实例分割、语义分割、全景分割的区别

一图足以说明:

2018-10-11 15:24:09

阅读数:226

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭