1、在没有groupby reduceby的情况下,可以将原始数据repartition()一下,增加task的数量。
2、如果存在groupby reduceby的情况,如果只是统计key的数量,可以在key前面加上随机数,将key再细化,可以明显提高处理速度。
3、如果存在groupby的情况,要统计某个key的所有数据,可以使用hive先进行预处理,下下策做数据过滤。其他暂时好像还没好的方法。
本文介绍在大数据处理中,如何通过增加task数量、细化key以及使用hive预处理等方法,来提高处理速度和效率。
1、在没有groupby reduceby的情况下,可以将原始数据repartition()一下,增加task的数量。
2、如果存在groupby reduceby的情况,如果只是统计key的数量,可以在key前面加上随机数,将key再细化,可以明显提高处理速度。
3、如果存在groupby的情况,要统计某个key的所有数据,可以使用hive先进行预处理,下下策做数据过滤。其他暂时好像还没好的方法。
1127
1035

被折叠的 条评论
为什么被折叠?