原文网址:
http://blog.csdn.net/sunmenggmail/article/details/8071502
它们之间的区别就是PCA是一种unsupervised的映射方法而LDA是一种supervised映射方法
PCA 是无监督的,它所作的只是将整组数据整体映射到最方便表示这组数据的坐标轴上,映射时没有利用任何数据内部的分类信息
用主要的特征代替其他相关的非主要的特征,所有特征之间的相关度越高越好
在实际应用中,最常用的一种LDA方法叫作Fisher Linear Discriminant,其简要原理就是求取一个线性变换,是的样本数据中“between classes scatter matrix”(不同类数据间的协方差矩阵)和“within classes scatter matrix”(同一类数据内部的各个数据间协方差矩阵)之比的达到最大。关于Fisher LDA更具体的内容可以见下面课件,写的很不错~
http://www.csd.uwo.ca/~olga/Courses//CS434a_541a//Lecture8.pdf