平面向量习题|低阶

前言

当我们引入了用坐标刻画向量后,向量就既有形的表示[有向线段],也有数的表达[坐标],那么向量的位置关系也就能用数的形式来刻画了。比如给定向量 a ⃗ = ( x 1 , y 1 ) \vec{a}=(x_1,y_1) a =(x1,y1) b ⃗ = ( x 2 , y 2 ) \vec{b}=(x_2,y_2) b =(x2,y2), 则

向量的垂直关系可以表示为:

a ⃗ ⊥ b ⃗ \vec{a}\perp\vec{b} a b ⇔ \Leftrightarrow a ⃗ ⋅ b ⃗ = 0 \vec{a}\cdot\vec{b}=0 a b =0 ⇔ \Leftrightarrow x 1 x 2 + y 1 y 2 = 0 x_1x_2+y_1y_2=0 x1x2+y1y2=0

向量的平行关系可以表示为:

a ⃗ / / b ⃗ \vec{a}//\vec{b} a //b ⇔ \Leftrightarrow a ⃗ = k ⋅ b ⃗ \vec{a}=k\cdot\vec{b} a =kb ⇔ \Leftrightarrow x 1 x 2 = y 1 y 2 = k \cfrac{x_1}{x_2}=\cfrac{y_1}{y_2}=k x2x1=y2y1=k ⇔ \Leftrightarrow x 1 y 2 − x 2 y 1 = 0 x_1y_2-x_2y_1=0 x1y2x2y1=0

这样,我们常常会碰到利用向量的位置关系来求解坐标中包含参数的问题。当然还得注意,两个向量的共线等价于两个向量的平行。

相关链接

平面向量习题|高阶

典例剖析

1、 已知平面向量 a ⃗ = ( 4 , − 3 ) \vec{a}=(4,-3) a =(4,3) b ⃗ = ( 5 , 0 ) \vec{b}=(5,0) b =(5,0).

(1). 求 a ⃗ \vec{a} a b ⃗ \vec{b} b 的夹角的余弦值;

解析: 令 < a ⃗ , b ⃗ > = θ <\vec{a},\vec{b}>=\theta <a ,b >=θ,由于 a ⃗ = ( 4 , − 3 ) \vec{a}=(4,-3) a =(4,3) b ⃗ = ( 5 , 0 ) \vec{b}=(5,0) b =(5,0)

又由 a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos ⁡ θ \vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot\cos\theta a b =a b cosθ,得到, cos ⁡ θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ \cos\theta=\cfrac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|} cosθ=a b a b

cos ⁡ θ = 4 × 5 + ( − 3 ) × 0 4 2 + ( − 3 ) 2 ⋅ 5 2 + 0 2 = 20 5 × 5 = 4 5 \cos\theta=\cfrac{4\times 5+(-3)\times 0}{\sqrt{4^2+(-3)^2}\cdot\sqrt{5^2+0^2}}=\cfrac{20}{5\times 5}=\cfrac{4}{5} cosθ=42+(3)2 52+02 4×5+(3)×0=5×520=54 .

(2). 若向量 a ⃗ + k b ⃗ \vec{a}+k\vec{b} a +kb a ⃗ − k b ⃗ \vec{a}-k\vec{b} a kb 互相垂直, 求实数 k k k 的值;

解析: 由于 a ⃗ + k ⋅ b ⃗ = ( 4 + 5 k , − 3 ) \vec{a}+k\cdot\vec{b}=(4+5k,-3) a +kb =(4+5k,3) a ⃗ − k ⋅ b ⃗ = ( 4 − 5 k , − 3 ) \vec{a}-k\cdot\vec{b}=(4-5k,-3) a kb =(45k,3)

又由于 a ⃗ + k ⋅ b ⃗ \vec{a}+k\cdot\vec{b} a +kb a ⃗ − k ⋅ b ⃗ \vec{a}-k\cdot\vec{b} a kb 垂直,则 ( a ⃗ + k ⋅ b ⃗ ) ⋅ (\vec{a}+k\cdot\vec{b})\cdot (a +kb ) ( a ⃗ − k ⋅ b ⃗ ) = 0 (\vec{a}-k\cdot\vec{b})=0 (a kb )=0

( 4 + 5 k ) ( 4 − 5 k ) + ( − 3 ) × ( − 3 ) = 0 (4+5k)(4-5k)+(-3)\times(-3)=0 (4+5k)(45k)+(3)×(3)=0, 即 16 − 25 k 2 + 9 = 0 16-25k^2+9=0 1625k2+9=0

25 − 25 k 2 = 0 25-25k^2=0 2525k2=0 , 则 k = ± 1 k=\pm 1 k=±1 .

(3). 当 k k k 为何值时, k a ⃗ + b ⃗ k\vec{a}+\vec{b} ka +b a ⃗ − 2 b ⃗ \vec{a}-2\vec{b} a 2b 共线。

解析: k a ⃗ + b ⃗ = ( 4 k + 5 , − 3 k + 0 ) k\vec{a}+\vec{b}=(4k+5,-3k+0) ka +b =(4k+5,3k+0) a ⃗ − 2 b ⃗ = ( 4 − 10 , − 3 − 2 × 0 ) = ( − 6 , − 3 ) \vec{a}-2\vec{b}=(4-10,-3-2\times 0)=(-6,-3) a 2b =(410,32×0)=(6,3)

由于 k a ⃗ + b ⃗ k\vec{a}+\vec{b} ka +b a ⃗ − 2 b ⃗ \vec{a}-2\vec{b} a 2b 共线,则 ( 4 k + 5 ) × ( − 3 ) − ( − 3 k ) × ( − 6 ) = 0 (4k+5)\times(-3)-(-3k)\times(-6)=0 (4k+5)×(3)(3k)×(6)=0

− 30 k − 15 = 0 -30k-15=0 30k15=0, 解得 k = − 1 2 k=-\cfrac{1}{2} k=21 .

2、【2019高一期末考试】平行四边形 A B C D ABCD ABCD中, A B = 3 AB=3 AB=3 A D = 2 AD=2 AD=2 ∠ B A D = 6 0 ∘ \angle BAD=60^{\circ} BAD=60,若 A E → = λ A B → + A D → \overrightarrow{AE}=\lambda \overrightarrow{AB}+\overrightarrow{AD} AE =λAB +AD ,且 B D ⊥ A E BD\perp AE BDAE,则 λ \lambda λ的值为 \qquad

A . 1 6 A.\cfrac{1}{6} A.61 B . 1 5 B.\cfrac{1}{5} B.51 C . 1 4 C.\cfrac{1}{4} C.41 D . 1 3 D.\cfrac{1}{3} D.31

提示:由题设可以得到, λ A B → = D E → \lambda \overrightarrow{AB}=\overrightarrow{DE} λAB =DE ,故点 E E E应该在 D C DC DC上,然后以点 A A A为坐标原点建系,则 B ( 3 , 0 ) B(3,0) B(30) D ( 1 , 3 ) D(1,\sqrt{3}) D(13 ) C ( 4 , 3 ) C(4,\sqrt{3}) C(43 ),设 E ( x , 3 ) E(x,\sqrt{3}) E(x3 )

A E → ⋅ B D → = 0 \overrightarrow{AE}\cdot \overrightarrow{BD}=0 AE BD =0,可解得 x = 3 2 x=\cfrac{3}{2} x=23,代入 λ A B → = D E → \lambda \overrightarrow{AB}=\overrightarrow{DE} λAB =DE ,求得 λ = 1 6 \lambda=\cfrac{1}{6} λ=61,故选 A A A.

3、【2019高一期末考试】已知单位向量 a ⃗ \vec{a} a b ⃗ \vec{b} b 满足 ∣ a ⃗ − b ⃗ ∣ = 1 |\vec{a}-\vec{b}|=1 a b =1,则 ∣ 2 a ⃗ + b ⃗ ∣ |2\vec{a}+\vec{b}| ∣2a +b = \qquad

$A.\sqrt{2}$ $B.\sqrt{3}$ $C.\sqrt{5}$ $D.\sqrt{7}$

提示:给 ∣ a ⃗ − b ⃗ ∣ = 1 |\vec{a}-\vec{b}|=1 a b =1平方,可以求得 a ⃗ ⋅ b ⃗ \vec{a}\cdot \vec{b} a b 的值,然后给 ∣ 2 a ⃗ + b ⃗ ∣ |2\vec{a}+\vec{b}| ∣2a +b 平方再开方,可得;选 D D D.

4、【2019高一期末考试】已知非零向量 a ⃗ \vec{a} a b ⃗ \vec{b} b 满足 ∣ a ⃗ ∣ = ∣ b ⃗ ∣ |\vec{a}|=|\vec{b}| a =b ,且 ∣ a ⃗ + b ⃗ ∣ = 3 ∣ b ⃗ ∣ |\vec{a}+\vec{b}|=\sqrt{3}|\vec{b}| a +b =3 b ,则 < a ⃗ , b ⃗ > <\vec{a},\vec{b}> <a b >=_________.

提示:令 ∣ a ⃗ ∣ = ∣ b ⃗ ∣ = t |\vec{a}|=|\vec{b}|=t a =b =t,给 ∣ a ⃗ + b ⃗ ∣ = 3 ∣ b ⃗ ∣ |\vec{a}+\vec{b}|=\sqrt{3}|\vec{b}| a +b =3 b 平方,变形得到 c o s < a ⃗ , b ⃗ > = 1 2 cos<\vec{a},\vec{b}>=\cfrac{1}{2} cos<a b >=21,故 < a ⃗ , b ⃗ > = π 3 <\vec{a},\vec{b}>=\cfrac{\pi}{3} <a b >=3π;

5、【2019高一期末考试第21题】已知向量 a ⃗ \vec{a} a b ⃗ \vec{b} b c ⃗ \vec{c} c 满足 a ⃗ = ( − 1 , 3 ) \vec{a}=(-1,3) a =(13) ∣ b ⃗ ∣ = 4 5 |\vec{b}|=4\sqrt{5} b =45 ∣ c ⃗ ∣ = 2 5 |\vec{c}|=2\sqrt{5} c =25

(1).若 a ⃗ / / c ⃗ \vec{a}//\vec{c} a //c ,求 c ⃗ \vec{c} c 的坐标;

提示:设 c ⃗ = ( x , y ) \vec{c}=(x,y) c =(xy),由题设得到方程组,求解即可, c ⃗ = ( 2 , − 3 2 ) \vec{c}=(\sqrt{2},-3\sqrt{2}) c =(2 32 ) c ⃗ = ( − 2 , 3 2 ) \vec{c}=(-\sqrt{2},3\sqrt{2}) c =(2 32 )

(2).若 a ⃗ ⊥ ( 2 a ⃗ − b ⃗ ) \vec{a}\perp (2\vec{a}-\vec{b}) a (2a b ),求 a ⃗ \vec{a} a b ⃗ \vec{b} b 的夹角 θ \theta θ

提示:利用内积为 0 0 0,可以求得 c o s θ = 2 2 cos\theta=\cfrac{\sqrt{2}}{2} cosθ=22 ,又 θ ∈ [ 0 , π ] \theta\in [0,\pi] θ[0π],故 θ = π 4 \theta=\cfrac{\pi}{4} θ=4π.

6、【2020北京人大附中高一试题】若平面向量 a ⃗ \vec{a} a b ⃗ \vec{b} b 满足 ∣ a ⃗ + b ⃗ ∣ = 1 |\vec{a}+\vec{b}|=1 a +b =1 a ⃗ + b ⃗ \vec{a}+\vec{b} a +b 平行于 x x x轴, b ⃗ = ( 2 , − 1 ) \vec{b}=(2,-1) b =(2,1),则 a ⃗ \vec{a} a =__________。

法1:将向量 a ⃗ \vec{a} a b ⃗ \vec{b} b 看成两个单个向量,设 a ⃗ = ( x , y ) \vec{a}=(x,y) a =(x,y) b ⃗ = ( 2 , − 1 ) \vec{b}=(2,-1) b =(2,1)

a ⃗ + b ⃗ = ( 2 + x , y − 1 ) \vec{a}+\vec{b}=(2+x,y-1) a +b =(2+x,y1),由 a ⃗ + b ⃗ \vec{a}+\vec{b} a +b 平行于 x x x轴,可得 y = 1 y=1 y=1

∣ a ⃗ + b ⃗ ∣ = 1 |\vec{a}+\vec{b}|=1 a +b =1,可得到 ( 2 + x ) 2 + ( 1 − 1 ) 2 = 1 \sqrt{(2+x)^2+(1-1)^2}=1 (2+x)2+(11)2 =1,解得 x = − 1 x=-1 x=1 x = − 3 x=-3 x=3

a ⃗ = ( − 1 , 1 ) \vec{a}=(-1,1) a =(1,1) a ⃗ = ( − 3 , 1 ) \vec{a}=(-3,1) a =(3,1).

法2:将 a ⃗ + b ⃗ \vec{a}+\vec{b} a +b 视为一个整体,由 a ⃗ + b ⃗ \vec{a}+\vec{b} a +b 平行于 x x x轴,则 a ⃗ + b ⃗ = ( 1 , 0 ) \vec{a}+\vec{b}=(1,0) a +b =(1,0) a ⃗ + b ⃗ = ( − 1 , 0 ) \vec{a}+\vec{b}=(-1,0) a +b =(1,0);

a ⃗ + b ⃗ = ( 1 , 0 ) \vec{a}+\vec{b}=(1,0) a +b =(1,0)时, a ⃗ = ( 1 , 0 ) − b ⃗ = ( 1 , 0 ) − ( 2 , − 1 ) = ( − 1 , 1 ) \vec{a}=(1,0)-\vec{b}=(1,0)-(2,-1)=(-1,1) a =(1,0)b =(1,0)(2,1)=(1,1)

a ⃗ + b ⃗ = ( − 1 , 0 ) \vec{a}+\vec{b}=(-1,0) a +b =(1,0)时, a ⃗ = ( − 1 , 0 ) − b ⃗ = ( − 1 , 0 ) − ( 2 , − 1 ) = ( − 3 , 1 ) \vec{a}=(-1,0)-\vec{b}=(-1,0)-(2,-1)=(-3,1) a =(1,0)b =(1,0)(2,1)=(3,1)

7、【2020北京人大附中高一试题】已知不共线的平面向量 a ⃗ \vec{a} a b ⃗ \vec{b} b c ⃗ \vec{c} c 两两所成的角相等,并且 ∣ a ⃗ ∣ = 1 |\vec{a}|=1 a =1 ∣ b ⃗ ∣ = 2 |\vec{b}|=2 b =2 ∣ c ⃗ ∣ = 3 |\vec{c}|=3 c =3,试求 a ⃗ + b ⃗ + c ⃗ \vec{a}+\vec{b}+\vec{c} a +b +c 的长度以及与已知三向量的夹角。

法1:主动建系,利用向量的坐标,从数的角度计算;

由于不共线的平面向量 a ⃗ \vec{a} a b ⃗ \vec{b} b c ⃗ \vec{c} c 两两所成的角相等,即为 2 π 3 \cfrac{2\pi}{3} 32π

故建立如下所示的平面直角坐标系,则 a ⃗ = ( 0 , 1 ) \vec{a}=(0,1) a =(0,1) b ⃗ = ( − 3 , − 1 ) \vec{b}=(-\sqrt{3},-1) b =(3 ,1) c ⃗ = ( 3 3 2 , − 3 2 ) \vec{c}=(\cfrac{3\sqrt{3}}{2},-\cfrac{3}{2}) c =(233 ,23)

d ⃗ = a ⃗ + b ⃗ + c ⃗ = ( 3 2 , − 3 2 ) \vec{d}=\vec{a}+\vec{b}+\vec{c}=(\cfrac{\sqrt{3}}{2},-\cfrac{3}{2}) d =a +b +c =(23 ,23),即 d ⃗ = 3 \vec{d}=\sqrt{3} d =3 ;

< d ⃗ , a ⃗ > = θ <\vec{d},\vec{a}>=\theta <d ,a >=θ,则由 cos ⁡ θ = ⋯ = − 3 2 \cos\theta=\cdots=-\cfrac{\sqrt{3}}{2} cosθ==23 ,解得 θ = 5 π 6 \theta=\cfrac{5\pi}{6} θ=65π

同理同法,可得到 < d ⃗ , b ⃗ > = π 2 <\vec{d},\vec{b}>=\cfrac{\pi}{2} <d ,b >=2π < d ⃗ , c ⃗ > = π 6 <\vec{d},\vec{c}>=\cfrac{\pi}{6} <d ,c >=6π.

故向量 a ⃗ + b ⃗ + c ⃗ \vec{a}+\vec{b}+\vec{c} a +b +c 的长度为 3 \sqrt{3} 3 ,与三个向量的夹角分别为 5 π 6 \cfrac{5\pi}{6} 65π π 2 \cfrac{\pi}{2} 2π π 6 \cfrac{\pi}{6} 6π.

法2:无需建系,利用已知的模长和已知的夹角求解;

由题目可知, ∣ a ⃗ ∣ = 1 |\vec{a}|=1 a =1 ∣ b ⃗ ∣ = 2 |\vec{b}|=2 b =2 ∣ c ⃗ ∣ = 3 |\vec{c}|=3 c =3,令 d ⃗ = a ⃗ + b ⃗ + c ⃗ \vec{d}=\vec{a}+\vec{b}+\vec{c} d =a +b +c

< a ⃗ , b ⃗ > = < b ⃗ , c ⃗ > = < c ⃗ , a ⃗ > = 12 0 ∘ <\vec{a},\vec{b}>=<\vec{b},\vec{c}>=<\vec{c},\vec{a}>=120^{\circ} <a ,b >=<b ,c >=<c ,a >=120

∣ a ⃗ + b ⃗ + c ⃗ ∣ = ( a ⃗ + b ⃗ + c ⃗ ) 2 |\vec{a}+\vec{b}+\vec{c}|=\sqrt{(\vec{a}+\vec{b}+\vec{c})^2} a +b +c =(a +b +c )2

= ∣ a ⃗ ∣ 2 + ∣ b ⃗ ∣ 2 + ∣ c ⃗ ∣ 2 + 2 a ⃗ ⋅ b ⃗ + 2 a ⃗ ⋅ c ⃗ + 2 b ⃗ ⋅ c ⃗ =\sqrt{|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2+2\vec{a}\cdot\vec{b}+2\vec{a}\cdot\vec{c}+2\vec{b}\cdot\vec{c}} =a 2+b 2+c 2+2a b +2a c +2b c

= 1 + 4 + 9 + 2 × 1 × 2 × ( − 1 2 ) + 2 × 2 × 3 × ( − 1 2 ) + 2 × 1 × 3 × ( − 1 2 ) = 3 =\sqrt{1+4+9+2\times 1\times 2\times(-\cfrac{1}{2})+2\times 2\times 3\times(-\cfrac{1}{2})+2\times 1\times 3\times(-\cfrac{1}{2}) }=\sqrt{3} =1+4+9+2×1×2×(21)+2×2×3×(21)+2×1×3×(21) =3

cos ⁡ < d ⃗ , a ⃗ > = a ⃗ ⋅ ( a ⃗ + b ⃗ + c ⃗ ) ∣ a ⃗ + b ⃗ + c ⃗ ∣ ⋅ a ⃗ = a ⃗ ⋅ a ⃗ + a ⃗ ⋅ b ⃗ + a ⃗ ⋅ c ⃗ 3 × 1 \cos<\vec{d},\vec{a}>=\cfrac{\vec{a}\cdot(\vec{a}+\vec{b}+\vec{c})}{|\vec{a}+\vec{b}+\vec{c}|\cdot \vec{a}}=\cfrac{\vec{a}\cdot\vec{a}+\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}}{\sqrt{3}\times 1} cos<d ,a >=a +b +c a a (a +b +c )=3 ×1a a +a b +a c

= 1 + ( − 1 ) − 3 2 3 = − 3 2 =\cfrac{1+(-1)-\frac{3}{2}}{\sqrt{3}}=-\cfrac{\sqrt{3}}{2} =3 1+(1)23=23 ,故 < d ⃗ , a ⃗ > = 5 π 6 <\vec{d},\vec{a}>=\cfrac{5\pi}{6} <d ,a >=65π

同理同法,可求其他的夹角,略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值