前言
当我们引入了用坐标刻画向量后,向量就既有形的表示[有向线段],也有数的表达[坐标],那么向量的位置关系也就能用数的形式来刻画了。比如给定向量 a ⃗ = ( x 1 , y 1 ) \vec{a}=(x_1,y_1) a=(x1,y1), b ⃗ = ( x 2 , y 2 ) \vec{b}=(x_2,y_2) b=(x2,y2), 则
向量的垂直关系可以表示为:
a ⃗ ⊥ b ⃗ \vec{a}\perp\vec{b} a⊥b ⇔ \Leftrightarrow ⇔ a ⃗ ⋅ b ⃗ = 0 \vec{a}\cdot\vec{b}=0 a⋅b=0 ⇔ \Leftrightarrow ⇔ x 1 x 2 + y 1 y 2 = 0 x_1x_2+y_1y_2=0 x1x2+y1y2=0
向量的平行关系可以表示为:
a ⃗ / / b ⃗ \vec{a}//\vec{b} a//b ⇔ \Leftrightarrow ⇔ a ⃗ = k ⋅ b ⃗ \vec{a}=k\cdot\vec{b} a=k⋅b ⇔ \Leftrightarrow ⇔ x 1 x 2 = y 1 y 2 = k \cfrac{x_1}{x_2}=\cfrac{y_1}{y_2}=k x2x1=y2y1=k ⇔ \Leftrightarrow ⇔ x 1 y 2 − x 2 y 1 = 0 x_1y_2-x_2y_1=0 x1y2−x2y1=0
这样,我们常常会碰到利用向量的位置关系来求解坐标中包含参数的问题。当然还得注意,两个向量的共线等价于两个向量的平行。
相关链接
典例剖析
1、 已知平面向量 a ⃗ = ( 4 , − 3 ) \vec{a}=(4,-3) a=(4,−3), b ⃗ = ( 5 , 0 ) \vec{b}=(5,0) b=(5,0).
(1). 求 a ⃗ \vec{a} a 与 b ⃗ \vec{b} b 的夹角的余弦值;
解析: 令 < a ⃗ , b ⃗ > = θ <\vec{a},\vec{b}>=\theta <a,b>=θ,由于 a ⃗ = ( 4 , − 3 ) \vec{a}=(4,-3) a=(4,−3) , b ⃗ = ( 5 , 0 ) \vec{b}=(5,0) b=(5,0),
又由 a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos θ \vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot\cos\theta a⋅b=∣a∣⋅∣b∣⋅cosθ,得到, cos θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ \cos\theta=\cfrac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|} cosθ=∣a∣⋅∣b∣a⋅b
则 cos θ = 4 × 5 + ( − 3 ) × 0 4 2 + ( − 3 ) 2 ⋅ 5 2 + 0 2 = 20 5 × 5 = 4 5 \cos\theta=\cfrac{4\times 5+(-3)\times 0}{\sqrt{4^2+(-3)^2}\cdot\sqrt{5^2+0^2}}=\cfrac{20}{5\times 5}=\cfrac{4}{5} cosθ=42+(−3)2⋅52+024×5+(−3)×0=5×520=54 .
(2). 若向量 a ⃗ + k b ⃗ \vec{a}+k\vec{b} a+kb 与 a ⃗ − k b ⃗ \vec{a}-k\vec{b} a−kb 互相垂直, 求实数 k k k 的值;
解析: 由于 a ⃗ + k ⋅ b ⃗ = ( 4 + 5 k , − 3 ) \vec{a}+k\cdot\vec{b}=(4+5k,-3) a+k⋅b=(4+5k,−3), a ⃗ − k ⋅ b ⃗ = ( 4 − 5 k , − 3 ) \vec{a}-k\cdot\vec{b}=(4-5k,-3) a−k⋅b=(4−5k,−3),
又由于 a ⃗ + k ⋅ b ⃗ \vec{a}+k\cdot\vec{b} a+k⋅b 与 a ⃗ − k ⋅ b ⃗ \vec{a}-k\cdot\vec{b} a−k⋅b 垂直,则 ( a ⃗ + k ⋅ b ⃗ ) ⋅ (\vec{a}+k\cdot\vec{b})\cdot (a+k⋅b)⋅ ( a ⃗ − k ⋅ b ⃗ ) = 0 (\vec{a}-k\cdot\vec{b})=0 (a−k⋅b)=0,
故 ( 4 + 5 k ) ( 4 − 5 k ) + ( − 3 ) × ( − 3 ) = 0 (4+5k)(4-5k)+(-3)\times(-3)=0 (4+5k)(4−5k)+(−3)×(−3)=0, 即 16 − 25 k 2 + 9 = 0 16-25k^2+9=0 16−25k2+9=0,
即 25 − 25 k 2 = 0 25-25k^2=0 25−25k2=0 , 则 k = ± 1 k=\pm 1 k=±1 .
(3). 当 k k k 为何值时, k a ⃗ + b ⃗ k\vec{a}+\vec{b} ka+b 与 a ⃗ − 2 b ⃗ \vec{a}-2\vec{b} a−2b 共线。
解析: k a ⃗ + b ⃗ = ( 4 k + 5 , − 3 k + 0 ) k\vec{a}+\vec{b}=(4k+5,-3k+0) ka+b=(4k+5,−3k+0), a ⃗ − 2 b ⃗ = ( 4 − 10 , − 3 − 2 × 0 ) = ( − 6 , − 3 ) \vec{a}-2\vec{b}=(4-10,-3-2\times 0)=(-6,-3) a−2b=(4−10,−3−2×0)=(−6,−3),
由于 k a ⃗ + b ⃗ k\vec{a}+\vec{b} ka+b 与 a ⃗ − 2 b ⃗ \vec{a}-2\vec{b} a−2b 共线,则 ( 4 k + 5 ) × ( − 3 ) − ( − 3 k ) × ( − 6 ) = 0 (4k+5)\times(-3)-(-3k)\times(-6)=0 (4k+5)×(−3)−(−3k)×(−6)=0,
即 − 30 k − 15 = 0 -30k-15=0 −30k−15=0, 解得 k = − 1 2 k=-\cfrac{1}{2} k=−21 .
2、【2019高一期末考试】平行四边形 A B C D ABCD ABCD中, A B = 3 AB=3 AB=3, A D = 2 AD=2 AD=2, ∠ B A D = 6 0 ∘ \angle BAD=60^{\circ} ∠BAD=60∘,若 A E → = λ A B → + A D → \overrightarrow{AE}=\lambda \overrightarrow{AB}+\overrightarrow{AD} AE=λAB+AD,且 B D ⊥ A E BD\perp AE BD⊥AE,则 λ \lambda λ的值为【 \qquad 】
A . 1 6 A.\cfrac{1}{6} A.61 B . 1 5 B.\cfrac{1}{5} B.51 C . 1 4 C.\cfrac{1}{4} C.41 D . 1 3 D.\cfrac{1}{3} D.31
提示:由题设可以得到, λ A B → = D E → \lambda \overrightarrow{AB}=\overrightarrow{DE} λAB=DE,故点 E E E应该在 D C DC DC上,然后以点 A A A为坐标原点建系,则 B ( 3 , 0 ) B(3,0) B(3,0), D ( 1 , 3 ) D(1,\sqrt{3}) D(1,3), C ( 4 , 3 ) C(4,\sqrt{3}) C(4,3),设 E ( x , 3 ) E(x,\sqrt{3}) E(x,3),
由 A E → ⋅ B D → = 0 \overrightarrow{AE}\cdot \overrightarrow{BD}=0 AE⋅BD=0,可解得 x = 3 2 x=\cfrac{3}{2} x=23,代入 λ A B → = D E → \lambda \overrightarrow{AB}=\overrightarrow{DE} λAB=DE,求得 λ = 1 6 \lambda=\cfrac{1}{6} λ=61,故选 A A A.
3、【2019高一期末考试】已知单位向量 a ⃗ \vec{a} a, b ⃗ \vec{b} b满足 ∣ a ⃗ − b ⃗ ∣ = 1 |\vec{a}-\vec{b}|=1 ∣a−b∣=1,则 ∣ 2 a ⃗ + b ⃗ ∣ |2\vec{a}+\vec{b}| ∣2a+b∣=【 \qquad 】
提示:给 ∣ a ⃗ − b ⃗ ∣ = 1 |\vec{a}-\vec{b}|=1 ∣a−b∣=1平方,可以求得 a ⃗ ⋅ b ⃗ \vec{a}\cdot \vec{b} a⋅b的值,然后给 ∣ 2 a ⃗ + b ⃗ ∣ |2\vec{a}+\vec{b}| ∣2a+b∣平方再开方,可得;选 D D D.
4、【2019高一期末考试】已知非零向量 a ⃗ \vec{a} a, b ⃗ \vec{b} b满足 ∣ a ⃗ ∣ = ∣ b ⃗ ∣ |\vec{a}|=|\vec{b}| ∣a∣=∣b∣,且 ∣ a ⃗ + b ⃗ ∣ = 3 ∣ b ⃗ ∣ |\vec{a}+\vec{b}|=\sqrt{3}|\vec{b}| ∣a+b∣=3∣b∣,则 < a ⃗ , b ⃗ > <\vec{a},\vec{b}> <a,b>=_________.
提示:令 ∣ a ⃗ ∣ = ∣ b ⃗ ∣ = t |\vec{a}|=|\vec{b}|=t ∣a∣=∣b∣=t,给 ∣ a ⃗ + b ⃗ ∣ = 3 ∣ b ⃗ ∣ |\vec{a}+\vec{b}|=\sqrt{3}|\vec{b}| ∣a+b∣=3∣b∣平方,变形得到 c o s < a ⃗ , b ⃗ > = 1 2 cos<\vec{a},\vec{b}>=\cfrac{1}{2} cos<a,b>=21,故 < a ⃗ , b ⃗ > = π 3 <\vec{a},\vec{b}>=\cfrac{\pi}{3} <a,b>=3π;
5、【2019高一期末考试第21题】已知向量 a ⃗ \vec{a} a, b ⃗ \vec{b} b, c ⃗ \vec{c} c满足 a ⃗ = ( − 1 , 3 ) \vec{a}=(-1,3) a=(−1,3), ∣ b ⃗ ∣ = 4 5 |\vec{b}|=4\sqrt{5} ∣b∣=45, ∣ c ⃗ ∣ = 2 5 |\vec{c}|=2\sqrt{5} ∣c∣=25,
(1).若 a ⃗ / / c ⃗ \vec{a}//\vec{c} a//c,求 c ⃗ \vec{c} c的坐标;
提示:设 c ⃗ = ( x , y ) \vec{c}=(x,y) c=(x,y),由题设得到方程组,求解即可, c ⃗ = ( 2 , − 3 2 ) \vec{c}=(\sqrt{2},-3\sqrt{2}) c=(2,−32)或 c ⃗ = ( − 2 , 3 2 ) \vec{c}=(-\sqrt{2},3\sqrt{2}) c=(−2,32),
(2).若 a ⃗ ⊥ ( 2 a ⃗ − b ⃗ ) \vec{a}\perp (2\vec{a}-\vec{b}) a⊥(2a−b),求 a ⃗ \vec{a} a与 b ⃗ \vec{b} b的夹角 θ \theta θ。
提示:利用内积为 0 0 0,可以求得 c o s θ = 2 2 cos\theta=\cfrac{\sqrt{2}}{2} cosθ=22,又 θ ∈ [ 0 , π ] \theta\in [0,\pi] θ∈[0,π],故 θ = π 4 \theta=\cfrac{\pi}{4} θ=4π.
6、【2020北京人大附中高一试题】若平面向量 a ⃗ \vec{a} a, b ⃗ \vec{b} b满足 ∣ a ⃗ + b ⃗ ∣ = 1 |\vec{a}+\vec{b}|=1 ∣a+b∣=1, a ⃗ + b ⃗ \vec{a}+\vec{b} a+b平行于 x x x轴, b ⃗ = ( 2 , − 1 ) \vec{b}=(2,-1) b=(2,−1),则 a ⃗ \vec{a} a=__________。
法1:将向量 a ⃗ \vec{a} a, b ⃗ \vec{b} b看成两个单个向量,设 a ⃗ = ( x , y ) \vec{a}=(x,y) a=(x,y), b ⃗ = ( 2 , − 1 ) \vec{b}=(2,-1) b=(2,−1),
则 a ⃗ + b ⃗ = ( 2 + x , y − 1 ) \vec{a}+\vec{b}=(2+x,y-1) a+b=(2+x,y−1),由 a ⃗ + b ⃗ \vec{a}+\vec{b} a+b平行于 x x x轴,可得 y = 1 y=1 y=1
由 ∣ a ⃗ + b ⃗ ∣ = 1 |\vec{a}+\vec{b}|=1 ∣a+b∣=1,可得到 ( 2 + x ) 2 + ( 1 − 1 ) 2 = 1 \sqrt{(2+x)^2+(1-1)^2}=1 (2+x)2+(1−1)2=1,解得 x = − 1 x=-1 x=−1或 x = − 3 x=-3 x=−3,
故 a ⃗ = ( − 1 , 1 ) \vec{a}=(-1,1) a=(−1,1)或 a ⃗ = ( − 3 , 1 ) \vec{a}=(-3,1) a=(−3,1).
法2:将 a ⃗ + b ⃗ \vec{a}+\vec{b} a+b视为一个整体,由 a ⃗ + b ⃗ \vec{a}+\vec{b} a+b平行于 x x x轴,则 a ⃗ + b ⃗ = ( 1 , 0 ) \vec{a}+\vec{b}=(1,0) a+b=(1,0)或 a ⃗ + b ⃗ = ( − 1 , 0 ) \vec{a}+\vec{b}=(-1,0) a+b=(−1,0);
当 a ⃗ + b ⃗ = ( 1 , 0 ) \vec{a}+\vec{b}=(1,0) a+b=(1,0)时, a ⃗ = ( 1 , 0 ) − b ⃗ = ( 1 , 0 ) − ( 2 , − 1 ) = ( − 1 , 1 ) \vec{a}=(1,0)-\vec{b}=(1,0)-(2,-1)=(-1,1) a=(1,0)−b=(1,0)−(2,−1)=(−1,1);
当 a ⃗ + b ⃗ = ( − 1 , 0 ) \vec{a}+\vec{b}=(-1,0) a+b=(−1,0)时, a ⃗ = ( − 1 , 0 ) − b ⃗ = ( − 1 , 0 ) − ( 2 , − 1 ) = ( − 3 , 1 ) \vec{a}=(-1,0)-\vec{b}=(-1,0)-(2,-1)=(-3,1) a=(−1,0)−b=(−1,0)−(2,−1)=(−3,1);
7、【2020北京人大附中高一试题】已知不共线的平面向量 a ⃗ \vec{a} a, b ⃗ \vec{b} b, c ⃗ \vec{c} c两两所成的角相等,并且 ∣ a ⃗ ∣ = 1 |\vec{a}|=1 ∣a∣=1, ∣ b ⃗ ∣ = 2 |\vec{b}|=2 ∣b∣=2, ∣ c ⃗ ∣ = 3 |\vec{c}|=3 ∣c∣=3,试求 a ⃗ + b ⃗ + c ⃗ \vec{a}+\vec{b}+\vec{c} a+b+c的长度以及与已知三向量的夹角。
法1:主动建系,利用向量的坐标,从数的角度计算;
由于不共线的平面向量 a ⃗ \vec{a} a, b ⃗ \vec{b} b, c ⃗ \vec{c} c两两所成的角相等,即为 2 π 3 \cfrac{2\pi}{3} 32π,
故建立如下所示的平面直角坐标系,则 a ⃗ = ( 0 , 1 ) \vec{a}=(0,1) a=(0,1), b ⃗ = ( − 3 , − 1 ) \vec{b}=(-\sqrt{3},-1) b=(−3,−1), c ⃗ = ( 3 3 2 , − 3 2 ) \vec{c}=(\cfrac{3\sqrt{3}}{2},-\cfrac{3}{2}) c=(233,−23),
则 d ⃗ = a ⃗ + b ⃗ + c ⃗ = ( 3 2 , − 3 2 ) \vec{d}=\vec{a}+\vec{b}+\vec{c}=(\cfrac{\sqrt{3}}{2},-\cfrac{3}{2}) d=a+b+c=(23,−23),即 d ⃗ = 3 \vec{d}=\sqrt{3} d=3;
设 < d ⃗ , a ⃗ > = θ <\vec{d},\vec{a}>=\theta <d,a>=θ,则由 cos θ = ⋯ = − 3 2 \cos\theta=\cdots=-\cfrac{\sqrt{3}}{2} cosθ=⋯=−23,解得 θ = 5 π 6 \theta=\cfrac{5\pi}{6} θ=65π;
同理同法,可得到 < d ⃗ , b ⃗ > = π 2 <\vec{d},\vec{b}>=\cfrac{\pi}{2} <d,b>=2π, < d ⃗ , c ⃗ > = π 6 <\vec{d},\vec{c}>=\cfrac{\pi}{6} <d,c>=6π.
故向量 a ⃗ + b ⃗ + c ⃗ \vec{a}+\vec{b}+\vec{c} a+b+c的长度为 3 \sqrt{3} 3,与三个向量的夹角分别为 5 π 6 \cfrac{5\pi}{6} 65π、 π 2 \cfrac{\pi}{2} 2π、 π 6 \cfrac{\pi}{6} 6π.
法2:无需建系,利用已知的模长和已知的夹角求解;
由题目可知, ∣ a ⃗ ∣ = 1 |\vec{a}|=1 ∣a∣=1, ∣ b ⃗ ∣ = 2 |\vec{b}|=2 ∣b∣=2, ∣ c ⃗ ∣ = 3 |\vec{c}|=3 ∣c∣=3,令 d ⃗ = a ⃗ + b ⃗ + c ⃗ \vec{d}=\vec{a}+\vec{b}+\vec{c} d=a+b+c;
且 < a ⃗ , b ⃗ > = < b ⃗ , c ⃗ > = < c ⃗ , a ⃗ > = 12 0 ∘ <\vec{a},\vec{b}>=<\vec{b},\vec{c}>=<\vec{c},\vec{a}>=120^{\circ} <a,b>=<b,c>=<c,a>=120∘,
则 ∣ a ⃗ + b ⃗ + c ⃗ ∣ = ( a ⃗ + b ⃗ + c ⃗ ) 2 |\vec{a}+\vec{b}+\vec{c}|=\sqrt{(\vec{a}+\vec{b}+\vec{c})^2} ∣a+b+c∣=(a+b+c)2
= ∣ a ⃗ ∣ 2 + ∣ b ⃗ ∣ 2 + ∣ c ⃗ ∣ 2 + 2 a ⃗ ⋅ b ⃗ + 2 a ⃗ ⋅ c ⃗ + 2 b ⃗ ⋅ c ⃗ =\sqrt{|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2+2\vec{a}\cdot\vec{b}+2\vec{a}\cdot\vec{c}+2\vec{b}\cdot\vec{c}} =∣a∣2+∣b∣2+∣c∣2+2a⋅b+2a⋅c+2b⋅c
= 1 + 4 + 9 + 2 × 1 × 2 × ( − 1 2 ) + 2 × 2 × 3 × ( − 1 2 ) + 2 × 1 × 3 × ( − 1 2 ) = 3 =\sqrt{1+4+9+2\times 1\times 2\times(-\cfrac{1}{2})+2\times 2\times 3\times(-\cfrac{1}{2})+2\times 1\times 3\times(-\cfrac{1}{2}) }=\sqrt{3} =1+4+9+2×1×2×(−21)+2×2×3×(−21)+2×1×3×(−21)=3
cos < d ⃗ , a ⃗ > = a ⃗ ⋅ ( a ⃗ + b ⃗ + c ⃗ ) ∣ a ⃗ + b ⃗ + c ⃗ ∣ ⋅ a ⃗ = a ⃗ ⋅ a ⃗ + a ⃗ ⋅ b ⃗ + a ⃗ ⋅ c ⃗ 3 × 1 \cos<\vec{d},\vec{a}>=\cfrac{\vec{a}\cdot(\vec{a}+\vec{b}+\vec{c})}{|\vec{a}+\vec{b}+\vec{c}|\cdot \vec{a}}=\cfrac{\vec{a}\cdot\vec{a}+\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}}{\sqrt{3}\times 1} cos<d,a>=∣a+b+c∣⋅aa⋅(a+b+c)=3×1a⋅a+a⋅b+a⋅c
= 1 + ( − 1 ) − 3 2 3 = − 3 2 =\cfrac{1+(-1)-\frac{3}{2}}{\sqrt{3}}=-\cfrac{\sqrt{3}}{2} =31+(−1)−23=−23,故 < d ⃗ , a ⃗ > = 5 π 6 <\vec{d},\vec{a}>=\cfrac{5\pi}{6} <d,a>=65π,
同理同法,可求其他的夹角,略。