均值不等式的常见使用技巧

前言

均值不等式这一素材,是高中数学中少见的几个需要同时验证成立的多条件素材。由于要多头验证,所以学生很不习惯,感觉很难掌握。

公式内容

  • 已知两个正数 a , b a,b ab,则有

a + b 2 ⩾ a b      \cfrac{a+b}{2}\geqslant \sqrt{ab}\;\; 2a+bab (当且仅当 a = b a=b a=b时取到等号)

在使用其求最值时,常使用变形形式: a + b ⩾ 2 a b      a+b\geqslant 2\sqrt{ab}\;\; a+b2ab a b ⩽ ( a + b 2 ) 2      ab\leqslant (\cfrac{a+b}{2})^2\;\; ab(2a+b)2

使用条件

① 各项[如 a + b a+b a+b 中的 a a a b b b]、各因式[如 a ⋅ b a\cdot b ab 中的 a a a b b b]必须为正数;一正

② 各项的和[如 a a a b b b 的和 a + b a+b a+b]或各因式的积[因式 a a a b b b 的积 a b ab ab]必须为常数;二定

③ 各项或各因式能够取相等的值[即方程 a = b a=b a=b 的解在允许取值范围内];三相等

简称:一正、二定、三相等,三个条件必须同时成立。1

理解内涵

  • 从表达式中的字母内涵入手理解公式

a + b ≥ 2 a b a+b\ge 2\sqrt{ab} a+b2ab ,如 a 、 b a、b ab可以是数字,可以代数式,如单项式、多项式;整式、分式、指数式、对数式、三角式等等

比如这些表达式都可以考虑用均值不等式:

x + 2 x ⩾ 2 2 ( x > 0 ) x+\cfrac{2}{x}\geqslant 2\sqrt{2}(x >0) x+x222 (x>0)

2 x + x 2 ⩾ 2 ( x > 0 ) \cfrac{2}{x}+\cfrac{x}{2}\geqslant 2(x >0) x2+2x2(x>0)

2 x + 2 y ⩾ 2 2 x + y 2^x+2^y\geqslant 2\sqrt{2^{x+y}} 2x+2y22x+y

l o g a b + l o g b a ⩾ 2 ( l o g a b > 0 ) log_a^b+log_b^a\geqslant 2(log_a^b >0) logab+logba2(logab>0)

s i n x + 1 s i n x ⩾ 2 ( 0 < s i n x ⩽ 1 ) sinx+\cfrac{1}{sinx}\geqslant 2(0 < sinx \leqslant 1) sinx+sinx12(0<sinx1)

a 2 + b 2 a b = a b + b a ⩾ 2 ( a , b > 0 ) \cfrac{a^2+b^2}{ab}=\cfrac{a}{b}+\cfrac{b}{a}\geqslant 2(a,b>0) aba2+b2=ba+ab2(ab>0)

当你看了以上这么多的式子时,你是否想过它们能否统一用一个式子来刻画。仔细想想,再琢磨琢磨看,是不是能用下面的式子来表示?

a + b ⩾ 2 a b ( a , b > 0 ) a+b\geqslant 2\sqrt{ab}(a,b>0) a+b2ab (ab>0)

如果这样读书,课本自然就越读越薄了。

理论依据

在均值不等式中, a + b 2 ⩾ a b      \cfrac{a+b}{2}\geqslant \sqrt{ab}\;\; 2a+bab (当且仅当 a = b a=b a=b时取到等号),若其乘积 a b = P ab=P ab=P P P P为定值),则其和 a + b ⩾ 2 P a+b\geqslant 2\sqrt{P} a+b2P ,当且仅当 a = b a=b a=b 时,和 a + b a+b a+b 能取到最小值 2 P 2\sqrt{P} 2P ; 简称为“积定和最小” ;

若其和 a + b = S a+b=S a+b=S S S S为定值),则其积 a b ⩽ ( a + b 2 ) 2 = S 2 4 ab\leqslant (\cfrac{a+b}{2})^2=\cfrac{S^2}{4} ab(2a+b)2=4S2,当且仅当 a = b a=b a=b 时,积 a b ab ab 能取到最大值 S 2 4 \cfrac{S^2}{4} 4S2; 简称为“和定积最大” ;

使用技巧

✍️ 直接使用,充分理解【定积式】和【定和式】两个自创概念;

形如 a x + b x    ax+\cfrac{b}{x}\; ax+xb a a a, b b b为正常数)2 y x + x y \cfrac{y}{x}+\cfrac{x}{y} xy+yx a 2 + b 2 a b = b a + a b    ( a b > 0 ) \cfrac{a^2+b^2}{ab}=\cfrac{b}{a}+\cfrac{a}{b}\;(ab>0) aba2+b2=ab+ba(ab>0) 称为定积式[如 a x ⋅ b x = a b ax\cdot \cfrac{b}{x}=ab axxb=ab]等,这样能自然想起用均值不等式求最小值,比如 y x + x y ⩾ 2 \cfrac{y}{x}+\cfrac{x}{y}\geqslant 2 xy+yx2 .

形如 x ⋅ ( 2 − x ) ( 0 < x < 2 ) x\cdot(2-x)(0<x<2) x(2x)(0<x<2) 的表达式称为定和式 [如 x + ( 2 − x ) = 2 x+(2-x)=2 x+(2x)=2,其和为定值],自然想到使用均值不等式求最大值,比如 x ⋅ ( 2 − x ) ⩽ [ x + ( 2 − x ) 2 ] 2 = 1 x\cdot(2-x)\leqslant[\cfrac{x+(2-x)}{2}]^2=1 x(2x)[2x+(2x)]2=1

✍️ 变形使用,就是为了保证 “一正二定三相等” 的使用条件,我们才不得不使用以下的数学变形。

  • 技巧一:负化正,目的是为了满足 “正” 这一条,

引例:当 x < 0 x<0 x<0时,求最大值: y = x + 2 x = − [ ( − x ) + ( 2 − x ) ] ⩾ − 2 ( − x ) ⋅ 2 − x = − 2 2 y=x+\cfrac{2}{x}=-[(-x)+(\cfrac{2}{-x})]\geqslant -2\sqrt{(-x)\cdot\cfrac{2}{-x}}=-2\sqrt{2} y=x+x2=[(x)+(x2)]2(x)x2 =22 3

  • 技巧二:拆添项,如将 项 x x x 拆分为 x = ( x − 1 ) + 1 x=(x-1)+1 x=(x1)+1,目的是为了凑乘积为定值,

引例: y = x + 2 x − 1 ( x > 1 ) y=x+\cfrac{2}{x-1} (x>1) y=x+x12(x>1)

  • 技巧三:凑系数,如将 x ⋅ y x\cdot y xy的系数 1 1 1 1 1 1 利用等价变形分别凑成 2 2 2 3 3 3,如 x y = 1 6 ⋅ ( 6 x y ) = 1 6 [ ( 2 x ) ⋅ ( 3 y ) ] xy=\cfrac{1}{6}\cdot(6xy)=\cfrac{1}{6}[(2x)\cdot(3y)] xy=61(6xy)=61[(2x)(3y)]

引例: 2 x + 3 y = 4 2x+3y=4 2x+3y=4 x , y > 0 x,y>0 x,y>0,求 x y xy xy的最大值 x y = 6 x y 6 = ( 2 x ) ( 3 y ) 6 ≤ 1 6 ⋅ ( 2 x + 3 y 2 ) 2 xy=\cfrac{6xy}{6}=\cfrac{(2x)(3y)}{6}\leq \cfrac{1}{6}\cdot \Big(\cfrac{2x+3y}{2}\Big)^2 xy=66xy=6(2x)(3y)61(22x+3y)2

  • 技巧四: 在指数位置或分母位置使用;4
  • 技巧五:连续多次使用均值不等式;5
  • 技巧六: 1 1 1的妙用或常数代换,已知 a , b > 0 a,b>0 a,b>0,且 a + b = 1 a+b=1 a+b=1,求证: ( 1 + 1 a ) ( 1 + 1 b ) ⩾ 9 (1+\cfrac{1}{a})(1+\cfrac{1}{b})\geqslant 9 (1+a1)(1+b1)96
  • 技巧七: 求限定条件下的最值[高考高频考点]

方法:常数代换和乘常数再除常数,7

  • 技巧八:将以上技巧组合使用;8
  • 技巧九:直接给定的不是 a x + b x ax+\cfrac{b}{x} ax+xb 型的,通过恒等变形,构造 a x + b x ax+\cfrac{b}{x} ax+xb型(高考中的高频变形),

方法思路:此处应该联系分离常数方法,和化为部分分式的变形技巧以及对勾函数或叫耐克函数;9

  • 闭环补充 :均值不等式失效时,需要用到对勾函数的单调性;

比如求 g ( x ) = x + 2 x ( x ⩾ 2 ) g(x)=x+\cfrac{2}{x}(x\geqslant 2) g(x)=x+x2(x2)的最小值;10

相关链接


  1. 均值不等式中还有一个需要注意的地方: a , b ∈ R a,b\in R abR,【错例】如已知向量的内积 a ⃗ ⋅ b ⃗ = 1 , \vec{a}\cdot\vec{b}=1, a b =1则有人这样做 a ⃗ + b ⃗ ≥ 2 a ⃗ ⋅ b ⃗ = 2 \vec{a}+\vec{b} \ge 2\sqrt{\vec{a}\cdot\vec{b}}=2 a +b 2a b =2,这是错的,因为 a ⃗ , b ⃗ \vec{a},\vec{b} a b 不是实数,而是向量。 ↩︎

  2. a = 1 a=1 a=1 b = k > 0 b=k>0 b=k>0 时, a x + b x    ax+\cfrac{b}{x}\; ax+xb 简化为 x + k x ( k > 0 ) x+\cfrac{k}{x}(k>0) x+xk(k>0),它其实就是最简单的对勾函数 f ( x ) = x + k x ( k > 0 ) f(x)=x+\cfrac{k}{x}(k>0) f(x)=x+xk(k>0) x > 0 x>0 x>0 时的图像的最低点。 ↩︎

  3. 过点 P ( 2 , 1 ) P(2,1) P(21)作直线 l l l,分别交 x x x轴、 y y y轴正半轴于 A A A B B B两点, O O O为坐标原点,当 △ A O B \triangle AOB AOB的面积最小时,求直线 l l l的方程;
    分析:过点 P P P的直线 l l l x x x轴、 y y y轴正半轴于 A A A B B B两点,
    则直线 l l l的斜率 k k k一定存在且小于零,故设为 y − 1 = k ( x − 2 ) y-1=k(x-2) y1=k(x2)
    则点 A ( 2 − 1 k , 0 ) A(2-\cfrac{1}{k},0) A(2k10) B ( 0 , 1 − 2 k ) B(0,1-2k) B(012k) k < 0 k<0 k<0
    S △ A O B = 1 2 ∣ O A ∣ ⋅ ∣ O B ∣ = 1 2 ( 2 − 1 k ) ( 1 − 2 k ) S_{\triangle AOB}=\cfrac{1}{2}|OA|\cdot |OB|=\cfrac{1}{2}(2-\cfrac{1}{k})(1-2k) SAOB=21OAOB=21(2k1)(12k) = 1 2 ( 4 − 4 k − 1 k ) =\cfrac{1}{2}(4-4k-\cfrac{1}{k}) =21(44kk1)
    = 1 2 [ 4 − ( 4 k + 1 k ) ] =\cfrac{1}{2}[4-(4k+\cfrac{1}{k})] =21[4(4k+k1)] = 1 2 [ 4 + ( − 4 k ) + 1 ( − k ) ] =\cfrac{1}{2}[4+(-4k)+\cfrac{1}{(-k)}] =21[4+(4k)+(k)1] ⩾ 1 2 [ 4 + 2 ( − 4 k ) ⋅ 1 ( − k )      ] = 4 \geqslant \cfrac{1}{2}\left [4+2\sqrt{(-4k)\cdot \cfrac{1}{(-k)}}\;\;\right ]=4 21[4+2(4k)(k)1 ]=4
    当且仅当 − 4 k = − 1 k -4k=-\cfrac{1}{k} 4k=k1,即 k = − 1 2 k=-\cfrac{1}{2} k=21时等号成立,
    故所求直线 l l l的方程为 x + 2 y − 4 = 0 x+2y-4=0 x+2y4=0. ↩︎

  4. 2 x + 4 y = 4 2^x+4^y=4 2x+4y=4,则 x + 2 y x+2y x+2y的最大值是________.
    分析: 4 = 2 x + 4 y ≥ 2 2 x + 2 y 4=2^x+4^y \ge 2\sqrt{2^{x+2y}} 4=2x+4y22x+2y ,则有 2 2 ≥ 2 x + 2 y 2^2 \ge 2^{x+2y} 222x+2y,故 x + 2 y ≤ 2 x+2y \leq 2 x+2y2
    求: x x 2 + 3 x + 1 = 1 x + 1 x + 2 \cfrac{x}{x^2+3x+1}=\cfrac{1}{x+\cfrac{1}{x}+2} x2+3x+1x=x+x1+21 的最大值。 ↩︎

  5. a , b a,b a,b均为正实数,求证: 1 a 2 + 1 b 2 + a b ≥ 2 2 \cfrac{1}{a^2}+\cfrac{1}{b^2}+ab\ge 2\sqrt{2} a21+b21+ab22 .
    分析:由于 a > 0 , b > 0 a>0,b>0 a>0,b>0,故有 1 a 2 + 1 b 2 ≥ 2 1 a 2 ⋅ 1 b 2 = 2 a b \cfrac{1}{a^2}+\cfrac{1}{b^2}\ge 2\sqrt{\cfrac{1}{a^2}\cdot\cfrac{1}{b^2}}=\cfrac{2}{ab} a21+b212a21b21 =ab2, 当且仅当 1 a 2 = 1 b 2 \cfrac{1}{a^2}=\cfrac{1}{b^2} a21=b21,即 a = b a=b a=b时等号成立;
    2 a b + a b ≥ 2 2 a b ⋅ a b = 2 2 \cfrac{2}{ab}+ab\ge 2\sqrt{\cfrac{2}{ab}\cdot ab}=2\sqrt{2} ab2+ab2ab2ab =22 ,当且仅当 2 a b = a b \cfrac{2}{ab}=ab ab2=ab时等号成立;
    所以 1 a 2 + 1 b 2 + a b ≥ 2 a b + a b ≥ 2 2 \cfrac{1}{a^2}+\cfrac{1}{b^2}+ab\ge \cfrac{2}{ab}+ab\ge 2\sqrt{2} a21+b21+abab2+ab22 , 当且仅当 { 1 a 2 = 1 b 2 2 a b = a b \begin{cases}\cfrac{1}{a^2}=\cfrac{1}{b^2}\\\cfrac{2}{ab}=ab\end{cases} a21=b21ab2=ab,即 a = b = 2 4 a=b=\sqrt[4]{2} a=b=42 时取等号。
    故, 1 a 2 + 1 b 2 + a b ≥ 2 2 \cfrac{1}{a^2}+\cfrac{1}{b^2}+ab\ge 2\sqrt{2} a21+b21+ab22 . ↩︎

  6. 提示: ( 1 + 1 a ) ( 1 + 1 b ) (1+\cfrac{1}{a})(1+\cfrac{1}{b}) (1+a1)(1+b1) = = = ( 1 + a + b a ) ( 1 + a + b b ) (1+\cfrac{a+b}{a})(1+\cfrac{a+b}{b}) (1+aa+b)(1+ba+b)
    = = = ( 2 + b a ) ( 2 + a b ) = 4 + 1 + 2 ( b a + a b ) ⩾ 5 + 2 × 2 b a × a b = 9 (2+\cfrac{b}{a})(2+\cfrac{a}{b})=4+1+2(\cfrac{b}{a}+\cfrac{a}{b})\geqslant 5+2\times2\sqrt{\cfrac{b}{a}\times\cfrac{a}{b}}=9 (2+ab)(2+ba)=4+1+2(ab+ba)5+2×2ab×ba =9 ↩︎

  7. 引例1,如已知 2 a + 3 b = 2 , a > 0 , b > 0 2a+3b=2,a>0,b>0 2a+3b=2a>0b>0,求 3 a + 2 b \cfrac{3}{a}+\cfrac{2}{b} a3+b2的最小值。
    3 a + 2 b = 1 2 ⋅ ( 2 a + 3 b ) ( 3 a + 2 b ) = 1 2 ⋅ ( 6 + 6 + 4 a b + 9 b a ) = ⋯ \cfrac{3}{a}+\cfrac{2}{b}=\cfrac{1}{2}\cdot (2a+3b)(\cfrac{3}{a}+\cfrac{2}{b})=\cfrac{1}{2}\cdot (6+6+\cfrac{4a}{b}+\cfrac{9b}{a})=\cdots a3+b2=21(2a+3b(a3+b2)=21(6+6+b4a+a9b)=
    引例2,如已知 x , y > 0 x,y>0 xy>0 x y = 10 xy=10 xy=10,则 z = 2 x + 5 y z=\cfrac{2}{x}+\cfrac{5}{y} z=x2+y5的最小值;
    法1:变量集中,二元变一元得到定积式。由 x y = 10 xy=10 xy=10 得到 y = 10 x y=\cfrac{10}{x} y=x10 ,代入 z = 2 x + 5 y z=\cfrac{2}{x}+\cfrac{5}{y} z=x2+y5 = 2 x + x 2 ⩾ 2 =\cfrac{2}{x}+\cfrac{x}{2}\geqslant2 =x2+2x2
    法2:乘常数除以常数, z = 2 x + 5 y z=\cfrac{2}{x}+\cfrac{5}{y} z=x2+y5 = 1 10 × ( x y ) ( 2 x + 5 y ) = 1 10 ( 5 x + 2 y ) =\cfrac{1}{10}\times(xy)(\cfrac{2}{x}+\cfrac{5}{y})=\cfrac{1}{10}(5x+2y) =101×(xy)(x2+y5)=101(5x+2y) ⩾ 1 10 × 2 10 × x y = 2 \geqslant \cfrac{1}{10}\times2\sqrt{10\times xy}=2 101×210×xy =2 ↩︎

  8. 【引例1】已知 a > 1 , b > 0 , a + b = 4 a>1,b>0, a+b=4 a>1b>0a+b=4,求 1 a − 1 + 4 b \cfrac{1}{a-1}+\cfrac{4}{b} a11+b4的最小值。( a + b = 4 ⟹ ( a − 1 ) + b = 3 a+b=4\Longrightarrow (a-1)+b=3 a+b=4(a1)+b=3)
    【引例2】已知 a > 1 , b > 2 , a + b = 4 a>1,b>2, a+b=4 a>1b>2a+b=4,求 1 a − 1 + 4 b − 2 \cfrac{1}{a-1}+\cfrac{4}{b-2} a11+b24的最小值。( a + b = 4 ⟹ ( a − 1 ) + ( b − 2 ) = 1 a+b=4\Longrightarrow (a-1)+(b-2)=1 a+b=4(a1)+(b2)=1) ↩︎

  9. 比如,形如 a x 2 + b x + c d x + e ( a , b , c , d , e 为常数 ) → 代换法 配凑法 a x + b x \cfrac{ax^2+bx+c}{dx+e}(a,b,c,d,e为常数)\xrightarrow[代换法]{配凑法}ax+\cfrac{b}{x} dx+eax2+bx+c(abcde为常数)配凑法 代换法ax+xb型(分子上使用均值不等式)
    形如 d x + e a x 2 + b x + c ( a , b , c , d , e 为常数 ) → 代换法 配凑法 1 a x + b x \cfrac{dx+e}{ax^2+bx+c}(a,b,c,d,e为常数)\xrightarrow[代换法]{配凑法}\cfrac{1}{ax+\cfrac{b}{x}} ax2+bx+cdx+e(abcde为常数)配凑法 代换法ax+xb1型(分母上使用均值不等式) ↩︎

  10. 当你使用均值不等式[能看到已满足正定]时,得到 g ( x ) = x + 2 x ⩾ 2 2 g(x)=x+\cfrac{2}{x}\geqslant 2\sqrt{2} g(x)=x+x222 ,形式上有了最小值 2 2 2\sqrt{2} 22 ,当且仅当 x = 2 x x=\cfrac{2}{x} x=x2,即 x = 2 x=\sqrt{2} x=2 时才能取到等号;但是这是错误的,原因是等号在自变量的取值集合(定义域) { x ∣ x ⩾ 2 } \{x\mid x\geqslant 2\} {xx2}内取不到。此时我们利用其单调性,可知其在 [ 2 , + ∞ ) [2,+\infty) [2+)上单调递增,故 g ( x ) m i n = g ( 2 ) = 2 + 2 2 = 3 g(x)_{min}=g(2)=2+\cfrac{2}{2}=3 g(x)min=g(2)=2+22=3↩︎

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值