数据结构与算法_09_堆

本文详细介绍了堆的概念,包括大顶堆和小顶堆的定义,并通过实例展示了堆的存储方式。堆通常使用数组实现,通过数组下标计算节点的子节点和父节点。文章接着阐述了如何向堆中插入元素和删除堆顶元素的堆化过程,以及这两种操作的时间复杂度为O(logn)。最后,提供了Java代码实现插入和删除堆顶元素的方法。
摘要由CSDN通过智能技术生成

数据结构与算法,系列文章传送地址,请点击本链接。

目录

一、如何理解“堆”?

二、如何实现一个堆?

1、堆的存储

2、堆的操作--往堆中插入一个元素

3、堆的操作--删除堆顶元素

4、堆化时间复杂度


一、如何理解

堆是一种特殊的树,需要满足如下两点要求:

1、堆是一个完全二叉树;(完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

2、堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。(堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫做大顶堆。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫做小顶堆

举例:其中第 1 个和第 2 个是大顶堆,第 3 个是小顶堆,第 4 个不是堆

二、如何实现一个堆?

1、堆的存储

完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

数组中下标为 i 的节点的左子节点,就是下标为 i∗2 的节点,右子节点就是下标为 i∗2+1 的节点,父节点就是下标为 2i 的节点。

2、堆的操作--往堆中插入一个元素

往堆中插入一个元素后,我们需要继续满足堆的两个特性。如果直接插入是不满足要求的,如图,我们需要进行调整,调整的过程我们成为堆化。堆化分为:从下往上和从上往下。

堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。如图:

代码:

public class Heap {

  private int[] a; // 数组,从下标1开始存储数据

  private int n;  // 堆可以存储的最大数据个数

  private int count; // 堆中已经存储的数据个数

  public Heap(int capacity) {

    a = new int[capacity + 1];

    n = capacity;

    count = 0;

  }

  public void insert(int data) {

    if (count >= n) return; // 堆满了

    ++count;

    a[count] = data;

    int i = count;

    while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化

      swap(a, i, i/2); // swap()函数作用:交换下标为ii/2的两个元素

      i = i/2;

    }

  }

 }

3、堆的操作--删除堆顶元素

从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。

假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。不过这种方法有点问题,就是最后堆化出来的堆并不满足完全二叉树的特性。会出现空洞,示例如下:

实际上,我们稍微改变一下思路,就可以解决这个问题。你看我画的下面这幅图。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法。

因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性

代码:

public void removeMax() {

  if (count == 0) return -1; // 堆中没有数据

  a[1] = a[count];

  --count;

  heapify(a, count, 1);

}

private void heapify(int[] a, int n, int i) { // 自上往下堆化

  while (true) {

    int maxPos = i;

    if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;

    if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;

    if (maxPos == i) break;

    swap(a, i, maxPos);

    i = maxPos;

  }

}

4、堆化时间复杂度

一个包含 n 个节点的完全二叉树,树的高度不会超过 log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)。

声明:文章内容是极客时间专栏学习的学习笔记,会做简化或调整,欢迎大家留言和评论。

数据结构与算法,系列文章传送地址,请点击本链接。https://blog.csdn.net/wanghaiping1993/article/details/125092448

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Happy编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值