Prim算法

前置知识:图的概念与性质

为了保证学习效果,请保证已经掌握前置知识之后,再来学习本章节!如果在阅读中遇到困难,也可以回到前面章节查阅。

引入

通过前面的学习,对于含有 n 个顶点的连通图来说可能包含有多种生成树,例如图 1 所示:

图 1 连通图的生成树

图 1 中的连通图和它相对应的生成树,可以用于解决实际生活中的问题:假设A、B、C 和 D 为 4 座城市,为了方便生产生活,要为这 4 座城市建立通信。对于 4 个城市来讲,本着节约经费的原则,只需要建立 3 个通信线路即可,就如图 1(b)中的任意一种方式。

在具体选择采用(b)中哪一种方式时,需要综合考虑城市之间间隔的距离,建设通信线路的难度等各种因素,将这些因素综合起来用一个数值表示,当作这条线路的权值。

图 2 无向网

假设通过综合分析,城市之间的权值如图 2(a)所示,对于(b)的方案中,选择权值总和为 7 的两种方案最节约经费。

这就是本节要讨论的最小生成树的问题,简单得理解就是给定一个带有权值的连通图(连通网),如何从众多的生成树中筛选出权值总和最小的生成树,即为该图的最小生成树。

给定一个连通网,求最小生成树的方法有:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法。

普里姆算法

一种贪心的算法,适用于稠密图,时间复杂度 O(n^2)O(n2)

核心思想:每次挑一条与当前集合相连的距离最近的点。

原理

普里姆算法在找最小生成树时,将顶点分为两类,一类是在查找的过程中已经包含在树中的(假设为 A 类),剩下的是另一类(假设为 B 类),并且 Prim 算法总是维护最小生成树的一部分,类似 Dijkstra 算法。

对于给定的连通网,起始状态全部顶点都归为 B 类。在找最小生成树时,选定任意一个顶点作为起始点,并将之从 B 类移至 A 类;然后找出 B 类中到 A 类中的顶点之间权值最小的顶点,将之从 B 类移至 A 类,如此重复,直到 B 类中没有顶点为止。所走过的顶点和边就是该连通图的最小生成树。

切分定理

❓为什么每次选最小边是正确的呢

Prim 算法是基于切分定理的。

  • 切分(Cut):把图中的节点分为两部分,称为一个切分。下图有个切分 C = (S, T),S = {A, B, D},T = {C, E}

  • 横切边(Crossing Edge):如果一个边的两个顶点,分别属于切分的两部分,这个边称为横切边。比如上图的边 BC、BE、DE 就是横切边。
  • 切分定理:给定任意切分,横切边中权值最小的边必然属于最小生成树。
    • 证明:假设原图切分后的两个部分各自组成了一棵最小生成子树,那么在这两个部分之间加入任意一条边都可以将形成整个图的生成树。很容易得知,加入所有横切边中权值最小的边就可以形成最小生成树。

算法过程

例如,通过普里姆算法查找图 2(a)的最小生成树的步骤为:

假如从顶点A出发,顶点 B、C、D 到顶点 A 的权值分别为 2、4、2,所以,对于顶点 A 来说,顶点 B 和顶点 D 到 A 的权值最小,假设先找到的顶点 B:

继续分析顶点 C 和 D,顶点 C 到 B 的权值为 3,到 A 的权值为 4;顶点 D 到 A 的权值为 2,到 B 的权值为无穷大(如果之间没有直接通路,设定权值为无穷大)。所以顶点 D 到 A 的权值最小:

最后,只剩下顶点 C,到 A 的权值为 4,到 B 的权值和到 D 的权值一样大,为 3。所以该连通图有两个最小生成树:

示例代码

具体实现代码为:

/*

S:当前已经在联通块中的所有点的集合

1. dist[i] = inf

2. for n 次

    t<-S外离S最近的点

    利用t更新S外点到S的距离

    st[t] = true

n次迭代之后所有点都已加入到S中

联系:Dijkstra算法是更新到起始点的距离,Prim是更新到集合S的距离

*/#include <iostream>#include <cstring>using namespace std;const int N = 510, INF = 0x3f3f3f3f;

int n, m;int g[N][N], dist[N];//邻接矩阵存储所有边//dist存储其他点到S的距离bool st[N];

int prim() {

    //如果图不连通返回INF, 否则返回res

    memset(dist, INF, sizeof dist);

    int res = 0;

    for(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值