常用代码模板2——基础算法

本文介绍了多种基础算法和优化技巧,包括素数判定的试除法和埃氏筛法,递推、逆序对的计算,以及快速幂、二分答案等高效算法。详细讨论了贪心算法的应用,并提供了区间贪心的解题思路。同时,文章涵盖了BFS、DFS及其剪枝技术,以及记忆化搜索在动态规划问题中的应用。最后,讲解了高精度算术运算的模板,如加法、减法、乘法和除法。
摘要由CSDN通过智能技术生成

构思算法:可以先想暴力解法,然后观察时间复杂度,如果超时,再考虑优化,优化的方向就是时间复杂度要下降,下表可以给出一些算法选择的参考:

暴力枚举 -> 枚举+优化 -> 正解

数据范围 时间复杂度 考察的算法
n \leq 30n≤30 指数级别 dfs+剪枝,状态压缩dp
n\leq10^2n≤102 O(n^3)O(n3) floyd,dp
n\leq10^3n≤103 O(n^2),O(n^2\log n)O(n2),O(n2logn) dp,二分,朴素版Dijkstra,朴素版Prim,Bellman-Ford
n\leq10^4n≤104 O(n*\sqrt{n})O(n∗n​) 块状链表,分块,莫队
n\leq10^5n≤105 O(n\log n)O(nlogn) 各种sort,线段树,树状数组,set/map,heap,拓扑排序,dijkstra+heap,prim+heap,spfa,二分
n\leq10^6n≤106 O(n)O(n),常数较小的 O(n\log n)O(nlogn)算法 hash,双指针扫描,并查集,常数较小的 O(n\log n)O(nlogn)算法:sort,树状数组,ST表,heap,dijkstra,spfa
n\leq10^7n≤107 O(n)O(n) 双指针扫描,线性筛素数
n\leq10^9n≤109 O(\sqrt{n})O(n​) 判断质数
n\leq10^{18}n≤1018 O(\log n)O(logn) 最大公约数,快速幂
n\leq10^{1000}n≤101000 O((\log n)^2)O((logn)2) 高精度加减乘除

备注:\log nlogn 主要出现在二分、分治和树、图中。

素数判定

试除法

// 试除法:判断一个整数 i 是不是素数,是则返回 true,否则返回 false
bool isprime(int i){
    if(i < 2)
        return false;
    for(int j = 2; j <= sqrt(i); j++)
        if(i % j == 0)
            return false;
    return true;
}

Copy

埃氏筛法

const int N = 100000;   // N 的大小取决于问题中 n 的范围
bool a[N];   // 标记数组  a[i] = 0(false):素数,a[i]=1(true): 非素数
// 埃氏筛法 函数执行完后 a[] 数组即为筛出的素数结果 a[i]=false 表示 i 是素数
void prime()
{
    a[0]=a[1]=true;         // 0 和 1 不是素数
    for(int i = 2; i <= n; i++)
    {
        if(a[i] == false)   // i 是素数
        {
            for(int j = i+i; j <= n; j += i)
                a[j] = true;
        }
    }
}

Copy

例题:素数距离 - TopsCoding

质因数分解

int t = 2;
while(k!=1){
    while(k%t == 0) {
        k /= t;
        cout << t << ' ';
    }

    t++;
}

Copy

递推

数学中的斐波那契数列、错排问题的递推公式、等差数列、等比数列问题,都可以用递推去解决。

在编程中,计算问题的解时,如果可以找到前后过程之间的数量关系(即递推式),那么就可以用递推去解决。
f[i] = g(f[i-1],f[i-2],...,f[1])f[i]=g(f[i−1],f[i−2],...,f[1])

int f[N] = {部分初始值};
for(int i = 2; i <= n; i++)
{
    f[i] = ...f[i-1]...f[i-2]...;
}
cout << f[n];

Copy

例题:小 C 的数组(array) - TopsCoding<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值