题目描述
为了准备即将到来的蹄球锦标赛,小刚正在训练他的N只兔子(方便起见,编号为1…N,其中1≤N≤100)进行传球。这些兔子在兔棚一侧沿直线排列,第i号兔子位于距离兔棚xi的地方(1≤xi≤1000)。每只兔子都在不同的位置上。在训练开始的时候,小刚会将若干个球传给不同的兔子。当第i号兔子接到球时,无论是从小刚或是从另一只兔子传来的,她会将球传给最近的兔子(如果有多只兔子与她距离相同,她会传给其中距左边最远的那只兔子)。
为了使所有兔子都有机会练习到传球,小刚想要确保每只兔子都持球至少一次。帮助他求出为了达到这一目的他开始时至少要传出的球的数量。
假设他在开始的时候能将球传给最适当的一组兔子。
输入格式
输入的第一行包含N。
第二行包含N个用空格分隔的整数,其中第i个整数为xi。
输出格式
输出小刚开始的时候最少需要传出的球的数量,使得所有兔子至少持球一次。
样例 #1
样例输入 #1
5
7 1 3 11 4
样例输出 #1
2
提示
在上面的样例中,小刚应该将球传给位于x=1的兔子和位于x=11的兔子。
位于x=1的兔子会将她的球传给位于x=3的兔子,在此之后这个球会在位于x=3的兔子和位于x=4的兔子之间来回传递。 位于x=11的兔子会将她的球传给位于x=7的兔子,然后球会被传给位于x=4的兔子,在此之后这个球也会在位于x=3的兔子和位于x=4的兔子之间来回传递。
这样的话,所有的兔子都会至少一次接到球(可能从小刚,也可能从另一只兔子)。
可以看出,不存在这样一只兔子,小刚可以将球传给她之后所有兔子最终都能被传到球。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e3 + 10;
const int MOD = 1e9 + 7;
int n, m, k, t;
ll a[MAXN];
ll b[MAXN];
ll to[MAXN];
int main()
{
cin >> n;
for (ll i = 1;i <= n;i++)
cin >> a[i];
sort(a+1, a+1+n);
for (ll i = 1;i < n;i++)
b[i] = a[i+1]-a[i];
to[1] = 1;
to[n] = -1;
for (ll i = 2;i < n;i++)
{
if (b[i] >= b[i-1])
to[i] = -1;
else
to[i] = 1;
}
int res = 0;
for (ll i = 1;i < n;i++)
{
if (to[i] == 1 && to[i+1] == -1)
{
res++;
if (to[i-1] == 1 && to[i+2] == -1)
res++;
}
}
cout<<res;
return 0;
}