第十一周 项目4 — 利用遍历思想求解图的问题(4)

/*               
 * Copyright (c) 2017,烟台大学计算机学院               
 * All right reserved.               
 * 文件名称:main.cpp              
 * 作者:王华慧               
 * 完成日期:2017年11月16日               
 * 版本号:v1.0               
 *               
 * 问题描述:算法验证  
 * 输入描述:标准函数输入               
 * 程序输出:标准函数输出           
*/    
(4)输出图G中从顶点u到v的长度为s的所有简单路径
注:测试图       

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void SomePaths(ALGraph *G,int u,int v,int s, int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;            //路径长度增1
    path[d]=u;              //将当前顶点添加到路径中
    if (u==v && d==s)           //输出一条路径
    {
        printf("  ");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
    }
    p=G->adjlist[u].firstarc; //p指向u的第一条边
    while(p!=NULL)
    {
        w=p->adjvex;     //w为u的邻接顶点
        if (visited[w]==0)      //若顶点未标记访问,则递归访问之
            SomePaths(G,w,v,s,path,d);
        p=p->nextarc; //找u的下一个邻接顶点
    }
    visited[u]=0;   //恢复环境
}

void DispSomePaths(ALGraph *G,int u,int v, int s)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("从%d到%d长为%d的路径:\n",u,v,s);
    SomePaths(G,u,v,s,path,-1);
    printf("\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    DispSomePaths(G, 1, 4, 3);
    return 0;
}
运行结果:


注:该算法的运行是在图的基本算法库上运行的详细请看http://blog.csdn.net/wanghuahui1/article/details/78486617

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,让我们来看一下这个问题。 首先,我们需要将问题转化为标准的背包问题形式。7.7(a)所示的问题中,每个物品有两个属性:重量和价值。我们可以将这两个属性分别作为背包问题中的物品重量和价值。然后再将每个物品拆分成多个子物品,每个子物品的重量都是原来物品的重量的一半。这样,我们就得到了标准的背包问题形式。 接下来,我们可以使用动态规划算法来解决这个问题。设 $f(i,j)$ 表示前 $i$ 个物品放入容量为 $j$ 的背包中所能获得的最大价值。状态转移方程为: $$ f(i,j) = \max\{f(i-1,j), f(i-1,j-w_i)+v_i, f(i-1,j-w_i/2)+v_i, f(i-1,j-w_i/2)-w_i/2+v_i, f(i-1,j-w_i)+w_i/2+v_i\} $$ 其中,$w_i$ 和 $v_i$ 分别表示第 $i$ 个物品的重量和价值。这个状态转移方程中的五个值分别表示不选第 $i$ 个物品、选第 $i$ 个物品、选第 $i$ 个物品的一半、不选第 $i$ 个物品的一半、选第 $i$ 个物品的一半并补足另一半的情况。 最终,我们的目标是求解 $f(n,W)$,其中 $n$ 表示物品的个数,$W$ 表示背包的容量。根据状态转移方程,我们可以使用一个二维数组来存储所有的状态值,然后在数组中查找 $f(n,W)$ 的值即可。 代码实现如下: ### 回答2: 算法7.7是用于求解0-1背包问题的动态规划算法。7.7(a)表示了背包问题的具体示例,其中有4个物品,它们的重量和价值分别为: 物品1:重量为2,价值为3 物品2:重量为3,价值为4 物品3:重量为4,价值为5 物品4:重量为5,价值为6 背包的容量为10,我们需要确定如何选择物品以使得背包中的总价值最大化。 首先,我们创建一个动态规划表格,表格的行表示物品,列表示背包容量。表格中的每个单元格表示当只考虑前i个物品,并且背包容量限制为j时的最大总价值。 具体的计算过程如下: 1. 初始化动态规划表格。这里我们需要一个5x11的表格来记录结果,其中行0和列0都初始化为0。 2. 对于每一个物品i,从1到4,依次进行如下操作: a) 对于每个背包容量j,从1到10,依次进行如下操作: - 如果物品i的重量wi大于当前背包容量j,则将表格中的当前单元格值设为表格中上一个单元格的值,即dp[i][j] = dp[i-1][j]; - 否则,将表格中的当前单元格值设为上一个单元格值和(上一个单元格对应的背包容量减去物品i的重量的单元格值加上物品i的价值)中的较大值,即dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)。 3. 最终,我们可以在动态规划表格的右下角找到最大总价值,即dp[4][10],它的值为11。 因此,根据算法7.7求解7.7(a)所示背包问题的结果为最大总价值为11。 ### 回答3: 7.7(a)所示的背包问题可以用算法7.7来求解。下面是具体的求解过程: 首先,我们需要定义问题的背包容量和物品的价值、重量。根据7.7(a),背包的容量为10,物品的价值和重量分别为[6, 5, 8, 9, 6]和[2, 3, 6, 7, 5]。 接下来,我们创建一个动态规划的二维数组dp,其中dp[i][j]表示前i个物品在容量为j的背包中的最大价值。初始化dp的第一行和第一列为0。 然后,我们利用动态规划的思想,从上至下、从左至右地填充dp数组。对于每一个位置dp[i][j],我们有两种选择:放入物品i或者不放入物品i。如果选择放入物品i,那么dp[i][j]的值为dp[i-1][j-w[i]] + v[i],表示当前背包容量减去物品i重量后的容量所能得到的最大价值再加上物品i的价值。如果选择不放入物品i,那么dp[i][j]的值为dp[i-1][j]。我们选择较大的值作为dp[i][j]的值。 最后,遍历完所有的物品和背包容量,dp数组的右下角的值dp[n][C]即为所求背包问题的最优解,其中n为物品的数量,C为背包的容量。 在本例中,计算完dp数组所有的值后,我们得到dp[5][10]的值为24。这说明,在背包容量为10的情况下,从这些物品中选择一些放入背包,能够得到的最大总价值为24。 因此,根据算法7.7的求解过程,7.7(a)所示的背包问题的最优解为24。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值