
深度学习
文章平均质量分 92
AlexInML
专注于机器学习和数据挖掘、个性化推荐、深度学习等领域。
联系方式:AlexInML@outlook.com
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Theano数据类型--TypeError
A Type in Theano represents a set of constraints on potential data objects. These constraints allow Theano to tailor C code to handle them and to statically optimize the computation graph.原创 2015-12-09 16:45:15 · 2231 阅读 · 0 评论 -
TensorFlow restore部分变量
有时候我们需要在Tensorflow中restore图的部分变量,比如我们想把两个已经训练好的子图合并成一个大图;或者我们在训练完一个网络结构后对其进行扩展,并且保留已经训练好的部分不变;又或者要对graph的几个部分交替进行训练。      Tensorflow在restore模型的时候是严格按照变量名的对应关系赋值的。例如在构建的Graph里有个name='...原创 2018-09-25 22:21:00 · 4294 阅读 · 0 评论 -
tensorflow 轻松实现自己的目标检测
图像分类和目标检测是计算机视觉两大模块。相比于图像分类,目标检测任务更复杂更困难。目标检测不但要检测到具体的目标,还要定位目标的具体位置。不过Tensorflow models上大神们的无私奉献已经使得目标检测模型平民化,只需要按照特定的格式准备好训练数据,就可以轻松训练出自己想要的目标检测模型。本文通过一个例子介绍如何通过Tensorflow models快速构建目标检测模型。准...原创 2018-01-21 23:00:17 · 19880 阅读 · 36 评论 -
TensorBoard--TensorFlow可视化
TensorBoard是TensorFlow极为有用的工具,可以用来记录和跟踪学习过程中网络结构节点的变化(Event、Images),展示整个网络结构,对于程序的结构检验、调试和优化有很大的帮助。本文用一个卷积神经网络(CNN)演示如何使用TensorBoard以及使用过程中遇到的一些问题。代码最后的graph结构图: 一、示例代码:1、加载数据MNISTimport tutorials.m原创 2016-11-22 20:40:49 · 8464 阅读 · 2 评论 -
深度学习目标检测之RPN-based方法
目标检测是机器学习领域很重要也很具有挑战性的一个分支,目标检测需要同时完成图像分割和子图分类两项task,比图像分类更具难度。最近几年,深度学习在图像处理上有很多成功的尝试,而目标检测领域也出现了一些很好的方法。本文主要介绍RPN-based的系列方法,包括R-CNN、Fast-RCNN和Faster-RCNN。 RPN-based(RPN:Region Proposal Network)目原创 2017-10-07 23:56:39 · 3926 阅读 · 0 评论 -
flask快速搭建tensorflow http服务
tensorflow是目前最受欢迎的deep learning框架之一,在学术界和产业界都有广泛的使用。在如何部署tensorflow模型提供远程调用服务方面官方提供了tensorflow serving框架,详细的介绍可以参考官网资料:https://tensorflow.github.io/serving/。本文主要介绍另一条部署服务的途径:利用flask快速搭建tensorflow http服原创 2017-08-05 19:13:44 · 11445 阅读 · 0 评论 -
Tensorflow Serving 模型部署和服务
本文转载自:https://zhuanlan.zhihu.com/p/233614132016年,机器学习在 Alpha Go 与李世石的世纪之战后变得更加炙手可热。Google也在今年推出了 TensorFlow Serving 又加了一把火。TensorFlow Serving 是一个用于机器学习模型 serving 的高性能开源库。它可以将训练好的机器学习模型部署到线上,使用 gRPC 作为接转载 2017-03-31 19:27:23 · 37748 阅读 · 2 评论 -
Tensorflow 数据预读取--Queue
Google开源的深度学习框架Tensorflow在数据预取上做了一些特殊的特征来提高模型训练或者推理的效率,避免在IO上耗费过多的时间。本文通过几个简单例子介绍Tensorflow构建queue常用函数的使用方法。 深度学习训练模型通常是建立在大数据基础上,一般情况下可以把数据都加载到内存避免训练时数据读取IO。但是,当数据占用空间较大,如图片集或者视频集,无法全部载入内存;另一种方式是在原创 2017-01-25 11:20:39 · 9190 阅读 · 0 评论 -
五个例子掌握theano.scan函数
一、theano的工作原理 在theano编程中,Graph是指导theano如何对变量进行操作的唯一途径,theano变量和theano Ops(操作)是Graph的两个基本构成元素。Graph只能由theano变量(包括shared变量)或常数组成。如图所示: 通常可以按如下步骤构造Graph:首先声明theano变量,theano变量在python文件中的作用范围和普通pyth原创 2016-01-14 16:32:03 · 13326 阅读 · 3 评论 -
Theano scan函数之生成斐波那契数列的两种方法
一、Theano的局限性Theano代码编写比较灵活,但是也存在一些局限性: 1、while和if循环必须通过theano.scan()操作实现,从而循环的主体会受到一些限制; 2、不支持goto和递归。 所以对于某些矩阵操作需要coder选择合适的方法解决。下面通过两种生成斐波那契数列的方法来讲解scan的使用:import theanoimport theano.tensor as T原创 2015-12-25 15:49:54 · 1263 阅读 · 0 评论 -
限制玻尔兹曼机(RBMs)理论详解
关于RBMs的文章已经有不少了,但是很多资料我在阅读的时候仍然对细节有一些疑惑。在查阅学习了大牛的视频、论文之后,很多问题豁然开朗,就在这片文章中记录下我对RBMs的粗浅了解吧。首先从玻尔兹曼机和限制玻尔兹曼机的结构和定义开始: Boltmann Machines:玻尔兹曼机(Boltmann Machines)的能量函数(Energy function)是: E(x,h)=−h⊤Wx−c⊤x−原创 2015-12-07 17:40:44 · 14404 阅读 · 0 评论 -
Nsight VS2012 was not found,no CUDA-capable device is detected,cudaGetDeviceCount returned 30
问题一 VS2012 was not found 为了实践Deep Learning有关的算法,尝试在本子上搭建Theano环境,按照Theano官网一步步进行配置,但还是遇到了不少问题,心累~~(* ̄3 ̄)╭在用VS2012 Express作为编译器安装CUDA5.5时遇到一个问题: Nsight for Visual Studio 2012 not installed原创 2015-12-03 18:06:22 · 5186 阅读 · 2 评论 -
从LeNet-5看卷积神经网络CNNs
一、概述: 自从2010年Hinton大神团队使用深度学习(Deep Learning)算法在 ImageNet 比赛中获得冠军之后,深度学习算法的触角在计算机视觉、语音识别、自然语言处理等领域不断延伸,并且在这些领域都取得了极大的成功。而2015年的ImageNet比赛也到处都是深度学习算法的影子。深度学习建立在各种神经网络结构的基础上,借助于GPU和大数据,使得深层的神经网络也能被很好的学习原创 2016-01-07 23:10:30 · 12279 阅读 · 0 评论 -
Theano权重子集更新
新入门Theano,官方文档最后一节讲到Theano中部分权重(权重子集)更新问题“How to update a subset of weights?”,按照教程自己写了一个实例,但是f = theano.function(…, updates=updates)报错。Bug信息提示,updates = inc_subtensor(subset, g*lr)得到的是一个tensor类型,而updat原创 2015-12-27 22:20:07 · 1427 阅读 · 0 评论 -
Failed to import pydot 和graphviz error: (2, 'RegOpenKeyEx',错误总结
在按照Theano Tutorial编写查看Theano图结构时遇到了点问题。示例代码:import theanoimport theano.tensor as Tfrom theano import functionimport pydot,a = theano.tensor.vector("a") # declare symbolic variableb = a + a **原创 2015-12-17 20:42:14 · 8674 阅读 · 0 评论 -
深度学习迁移模型BERT详解
2018年google AI组发表的一篇文章BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding在多个自然语言处理问题上取得了很大的提升。      BERT是一个迁移学习模型,在双向深度网络Transformer (https://arxiv.org...原创 2019-01-01 15:43:25 · 9327 阅读 · 0 评论