施密特正交化及QR分解(附实现代码)

施密特正交化

      施密特正交化(Gram-Schmidt Orthogonality)是常用的求欧式空间正交基的方法。给定一个线性无关向量组 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am,经过施密特正交化可以得到一组正交向量组 b 1 , b 2 , . . . , b m b_1,b_2,...,b_m b1,b2,...,bm,正交向量组中的每个向量正交化之后,就得到一个标准正交向量组。

     下面我们来看施密特正交化的具体步骤。因为向量组 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am是线性无关的,所以可以用这些向量来构造 b 1 , b 2 , . . . , b m b_1,b_2,...,b_m b1,b2,...,bm,具体如下:
b 1 = a 1 b_1 = a_1 b1=a1
b 2 = a 2 + h a 1 b_2 = a_2 + ha_1 b2=a2+ha1
b 3 = a 3 + h 1 a 1 + h 2 a 2 b_3 = a_3 + h_1a_1 + h_2a_2 b3=a3+h1a1+h2a2
. . . ... ...
反过来,我们也可以从 b 1 , b 2 , . . . , b m b_1,b_2,...,b_m b1,b2,...,bm退回到 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am
a 1 = b 1 a_1 = b_1 a1=b1
a 2 = b 2 + k b 1 a_2 = b_2 + k b_1 a2=b2+kb1
a 3 = b 3 + k 1 b 1 + k 2 b 2 a_3 = b_3 + k_1b_1 + k_2b_2 a3=b3+k1b1+k2b2
. . . ... ...
= = > ==> ==>
b 1 = a 1 b_1 = a_1 b1=a1
b 2 = a 2 − k b 1 b_2 = a_2 - kb_1 b2=a2kb1
b 3 = a 3 − k 1 b 1 − k 2 b 2 b_3 = a_3 - k_1b_1 - k_2b_2 b3=a3k1b1k2b2
. . . ... ...
只需要求出 k , k 1 , k 2 k,k_1,k_2 k,k1,k2这些系数,就可以得到 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am b 1 , b 2 , . . . , b m b_1,b_2,...,b_m b1,b2,...,bm的转化方式。由于 b 1 , b 2 , . . . , b m b_1,b_2,...,b_m b1,b2,...,bm是正交的,所以我们有:
b 1 T b 2 = 0 ⇒ b 1 T ( a 2 − k b 1 ) = 0 ⇒ k = b 1 T a 2 b 1 T b 1 b_1^Tb_2=0 ⇒ b_1^T(a_2 - kb_1)=0 ⇒ k=\frac{b_1^Ta_2}{b_1^Tb_1} b1Tb2=0b1T(a2kb1)=0k=b1Tb1b1Ta2
b 1 T b 3 = 0 ⇒ b 1 T ( a 3 − k 1 b 1 − k 2 b 2 ) = 0 ⇒ k 1 = b 1 T a 3 b 1 T b 1 b_1^Tb_3=0 ⇒ b_1^T(a_3 - k_1b_1 - k_2b_2)=0 ⇒ k_1=\frac{b_1^Ta_3}{b_1^Tb_1} b1Tb3=0b1T(a3k1b1k2b2)=0k1=b1Tb1b1Ta3
    b 2 T b 3 = 0 ⇒ b 2 T ( a 3 − k 1 b 1 − k 2 b 2 ) = 0 ⇒ k 2 = b 2 T a 3 b 2 T b 2 b_2^Tb_3=0 ⇒ b_2^T(a_3 - k_1b_1 - k_2b_2)=0 ⇒ k_2=\frac{b_2^Ta_3}{b_2^Tb_2} b2Tb3=0b2T(a3k1b1k2b2)=0k2=b2Tb2b2Ta3
. . . ... ...

根据这个公式很容易写出施密特正交化代码:

def schmidt_orthogonality(matrix_org, debug=False):
    """
    b1 = a1, b2 = a2 - kb1, b3 = a3 - k1b1 - k2b2
    :param matrix_org: m x n matrix, m >= n 且满秩
    :return:
    """
    m, n = matrix_org.shape
    matrix_ortho = matrix_org.copy()
    matrix_ortho = np.asarray(matrix_ortho, dtype=np.float)
    coefficient = np.zeros(shape=(m, n)) # 系数矩阵k、k1、k2
    coefficient[0, 0] = 1 # b1 = a1

    for i in range(1, n):  # 开始处理下一列
        coefficient[i, i] = 1
        for j in range(i):
            b_j = matrix_ortho[:, j]
            k_j = np.dot(b_j, matrix_org[:, i]) / np.dot(b_j, b_j)
            coefficient[j, i] = k_j
            matrix_ortho[:, i] -= k_j * b_j
	# 正交向量b1,b2...做正交化处理,系数也做相应的改变
    for i in range(n):
        devider = np.dot(matrix_ortho[:, i], matrix_ortho[:, i])
        if abs(devider) < 1e-16:  # 避免除以0
            matrix_ortho[:, i] *= 0
        else:
            devider = np.sqrt(devider)
            matrix_ortho[:, i] /= devider
            coefficient[i, :] *= devider

    print('result:', matrix_ortho)
    return matrix_ortho, coefficient

例如输入矩阵

[[1, 2, 2],
 [1, 0, 2],
 [0, 1, 1]]

得到:

matrix_ortho=
[[ 0.70710678  0.57735027 -0.40824829]
 [ 0.70710678 -0.57735027  0.40824829]
 [ 0.          0.57735027  0.81649658]]
coefficient=
[[1.41421356 1.41421356 2.82842712]
 [0.         1.73205081 0.57735027]
 [0.         0.         0.81649658]]
matrix_ortho * coefficient = 
[[ 1.00000000e+00  2.00000000e+00  2.00000000e+00]
 [ 1.00000000e+00 -7.64210971e-17  2.00000000e+00]
 [ 0.00000000e+00  1.00000000e+00  1.00000000e+00]]

由于数值计算有微小的误差,所以可以看到结果里面有-7.64210971e-17而不是正好等于0。

QR分解

施密特正交化得到的向量组正交,系数矩阵是上三角,满足A=QR。所以施密特正交化的结果就是矩阵的QR分解结果。

其他

对于非满秩矩阵可以先用单位向量扩展到满秩矩阵,然后再做施密特正交化。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页