在这篇技术博文中,我们将探讨如何利用LangChain框架的模板管理、变量提取和检查、模型切换以及输出解析等优势,打造一个自动生成广告文案的应用程序。
LangChain框架的优势
在介绍应用程序之前,让我们先了解一下LangChain框架的几个优势:
- 模板管理: 在大型项目中,文案可能有多种不同的模板。使用LangChain可以帮助我们更好地管理这些模板,保持代码的清晰和整洁。
- 变量提取和检查: LangChain能够自动提取文案模板中的变量并进行检查,确保我们没有遗漏填充任何变量,从而避免了潜在的错误。
- 模型切换: 如果我们想尝试使用不同的文案生成模型,只需简单地更改模型的名称,而无需修改大量的代码。
- 输出解析: LangChain的文案模板可以嵌入对输出格式的定义,使得在后续处理过程中更加方便地处理已经被格式化了的文案输出。
构建应用程序
现在,让我们将LangChain框架的优势应用到实际场景中,构建一个自动生成广告文案的应用程序。
实现思路
准备模板: 我们首先准备一些广告文案的模板,如“今日推荐海鲜是{ {name}},价格{ {price}}。”。
- 提取变量: 使用LangChain框架,我们可以轻松地提取文案模板中的变量,如{ {name}}和{ {price}},并进行必要的检查。
- 选择模型: 我们可以选择不同的文案生成模型,如GPT-3、BERT等,根据实际需求来切换模型。
- 生成文案: 应用程序将根据用户提供的信息和选定的模型,自动生成文案,并按照预先定义的输出格式进行解析和格式化。
- 保存数据:因为经过输出格式化后,数据不再是模糊的、无结构的文本,而是结构清晰的有格式的数据,可以保存为 CSV 文件。
安装依赖包
pip install pandas
代码
# 通过LangChain调用模型
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
# 创建原始提示模板
prompt_template = """您是一个专业的海鲜市场客户广告推广部文案的设计师。
对于售价为{price}元的{name},您能提供一个吸引人的简短描述吗?
{format_instructions}"""