[数据结构]-并查集

并查集

并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。常用在判断无项图中连通性问题。

主要操作

1.初始化

把每个点所在集合初始化为-1。
通常来说,这个步骤在每次使用该数据结构时只需要执行一次,无论何种实现方式,时间复杂度均为O(N)。

vector<int> v;
UnionFindSet(int n)
{
    v.resize(n,-1);
}
2.查找

查找元素所在的集合,即根节点。

int FindRoot(int x)
{
	int index=x;
	while(v[index]>=0)
	{
		//说明不是根,继续查找它的内容是否是根
		index=v[index]; 
	}
	return index;
}
3.合并

将两个元素所在的集合合并为一个集合。
通常来说,合并之前,应先判断两个元素是否属于同一集合,这可用上面的“查找”操作实现。

void Union(int x1,int x2)
{
	int root1=FindRoot(x1);
	int root2=FindRoot(x2);
	if(root1==root2)return;//已经联通
	else
	{
		//让一个根去当作另一个根的根 
		v[root1]+=v[root2]; 
		v[root2]=root1;	
	} 
}

最终数据结构代码:

class UnionFindSet{
	public:
		UnionFindSet(int n)
		{
			v.resize(n,-1);
		}
		int FindRoot(int x)
		{
			int index=x;
			while(v[index]>=0)
			{
				//说明不是根,继续查找它的内容是否是根
				index=v[index]; 
			}
			return index;
		}
		void Union(int x1,int x2)
		{
			int root1=FindRoot(x1);
			int root2=FindRoot(x2);
			if(root1==root2)return;//已经联通
			else
			{
				//让一个根去当作另一个根的根 
				v[root1]+=v[root2]; 
				v[root2]=root1;	//root2的根为下标是root1的点
			} 
		}
		//获得分组个数 
		int GetCount()
		{
			int sum=0;
			for(int i=0;i<v.size();++i)
			{
				if(v[i]<0)sum++;
			} 
			return sum;
		} 
	private:
		vector<int> v;
}; 

PS:Leetcode 547.朋友圈问题

class Solution {
public:
    int findCircleNum(vector<vector<int>>& r) {
        int n=r.size();
	    UnionFindSet ufs(n);
	    for(int i=0;i<n;i++){
		    for(int j=i;j<n;j++){
			    if(r[i][j]){
				    ufs.Union(i,j);
			    }
		    }
	    }
	return ufs.GetCount();
    }
    
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值