基于优化智能算法(粒子群&灰狼)的非侵入式负荷识别(NILM)建模(提供代码下载)

本文介绍了基于粒子群和灰狼优化算法的非侵入式负荷识别(NILM)建模方法。阐述了智能算法的基本原理,并详细讲解了粒子群和灰狼算法,将NILM问题转化为数学优化问题,通过算例进行了验证。
摘要由CSDN通过智能技术生成

基于优化智能算法(粒子群&灰狼)的非侵入式负荷识别(NILM)建模

本文主要从智能算法入手,介绍非侵入式识别的代码具体应用思路和场景,如有瑕疵,请海涵。

1.1 优化智能算法概述

智能算法的研究已经发展了很多年,尤其是一些典型的智能算法,在各类文章和程序中出现的次数特别多,例如遗传算法、粒子群算法、蜂群算法、鸟群算法。。。这些奇奇怪怪名字的算法其实内部计算的逻辑并不奇怪,总的来说其主要方法就是模拟自然界或者人类社会等物理、化学、生物的演变规律,将基因、粒子、鸟等等其视为一个一个算子,在建立其内部演变模型的基础上,进行穷举,最后达到所要计算的目的。如果你觉得听不懂,那没关系,其实不需要知道他们的本质到底是啥,你只需要将其视为一个输入和输出的黑盒,重要的调整其目标函数(fitness)和演化代数,具体的内部逻辑一般只需要在优化改进某类算法时才需要具体去分析。说完了智能算法的概述,下面具体说说本文需要用到的粒子群和灰狼算法的内容。

1.1.1 粒子群(PSO)算法

粒子群算法是一类经典的算法。具体介绍可以参考:
粒子群算法介绍

1.1.2 灰狼(GWO)算法

灰狼算法可以参考

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

封不觉777

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值