生成对抗网络

我们提出一个框架来通过对抗方式评估生成模型,我们同时训练两个模型:一个生成模型G捕捉数据分布,一个鉴别模型D估计一个样本来自于训练数据而不是G的概率。G的训练过程是最大化D犯错的概率。这个框架与minmax两个玩家的游戏相对应。在任意函数G和D的空间存在一个唯一解,G恢复训练数据的分布,D等于1/2。在G和D被多层感知机定义的情况下,整个系统可以用反向传播训练。在训练和生成样本的过程不需要任何马可夫链或展开近似推断网络。实验通过对生成样本的定性和定量评估显示了该框架的潜力。

介绍

深度学习能发现丰富、结构性的模型,这些模型能体现在人工智能应用中,如自然图像、包含演讲的语音波形,以及自然语言库符号等数据的概率分布。目前为止,深度学习的成功主要涉及鉴别模型,一般是将高维度的、富感观输入映射到一个类标签。这些成功主要基于反向传播和dropout算法,使用具有良好梯度表现的分段线性单元。深度生成模型则影响较小,因为难以近似很多由最大似然估计和相关策略引起的不可追踪的概率计算,并且在生成情景利用分段线性单元也非常困难。我们提出一个新的生成模型估算过程能避开这些困难。

在提出的对抗网络框架,生成模型与鉴别模型对抗,鉴别模型学习确认以一个样本是来自于模型分布还是数据分布。生成模型可以被想成是一群作假者,试图制造假币使用并不被发现,而鉴别模型类似警察,试图侦测假币。竞争使得双方都优化方法直到假的和真的无法区分。

框架可以为很多类型的模型和优化算法生成特殊的训练算法。这里,我们探索一个特例,生成模型利用一个多层感知机通过随机干扰生成样本,鉴别模型同样为一个多层感知机。我们将这个特例称为对抗网。这里我们近使用成功的反向传播和dropout算法来训练两个模型,生成模型仅使用前向传播生成样本。不需要近似推断或是马可夫链。

相关工作

一个具有隐藏变量的有向图模型的替换是具有隐藏变量的无向图模型,例如受限波尔曼机(RBMs),深度波尔曼机(DBMs)以及它们的变体。这类模型中的互动体现为未归一化势能函数的积,通过所有随机变量的状态的全局加总/融合归一化。这个数量(分割函数)和它的梯度除了一些特别小的个例外基本都无法追踪,尽管它们可以通过马可夫链蒙特卡洛(MCMC)方法来估算。混合对于依赖于MCMC的学习算法构成了一个巨大的挑战。

深度置信网络(DBNs)是包含一个无向层和多个有向层的混合模型。当一个快速近似层际训练标准存在,DBNs产生同时与无向和有向模型相关的计算困难。

另一个替换标准是不近似或绑定提出的指数相似,例如计分器和干扰对比估计(NCE)。两者都要求学习到的概率密度被分析性的具体到一个归一常数。注意在许多具有多层隐藏变量的有意思的生成模型中(例如DBNs和DBMs),甚至无法得到一个可追踪的未归一的概率密度。一些模型例如去噪自动编码机和收敛自动编码机有与用于RBMs计数器非常相似的学习规则。在NCE中,鉴别训练标准被用于拟合生成模型。但是,生成模型自身被用于鉴别从固定干扰分布样本生成数据,而不是去拟合一个单独的鉴别模型。因为NCE使用固定的噪音分布,当模型学习到观察变量一小部分的近似正确分布后学习变得异常缓慢。

最后,一些技巧不涉及明确定义一个概率分布,二是训练一个生成机从希望的分布中抽取样本。这种方式的优点是这样的机器可以用反向传播训练。一些这个领域的知名的工作有生成随机网络(GSN)框架,延伸了普通降噪自动编码机:两者都可以视作定义一个参数化的马可夫链,即学习执行一步生成马可夫链机器的参数。与GSNs相比,对抗网络框架不需要马可夫链来取样。因为对抗网络在生成时不需要反馈环,它们更善于利用分段线性单元,提高了反向传播的表现但是当使用反馈环时非绑定激活会产生问题。一些使用反向传播到它来训练生成机的近期例子包括自动编码变体贝叶斯和随机反向传播。



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值