历届试题 回文数字
时间限制:1.0s 内存限制:256.0MB
问题描述
观察数字:12321,123321 都有一个共同的特征,无论从左到右读还是从右向左读,都是相同的。这样的数字叫做:回文数字。
本题要求你找到一些5位或6位的十进制数字。满足如下要求:
该数字的各个数位之和等于输入的整数。
本题要求你找到一些5位或6位的十进制数字。满足如下要求:
该数字的各个数位之和等于输入的整数。
输入格式
一个正整数 n (10<n<100), 表示要求满足的数位和。
输出格式
若干行,每行包含一个满足要求的5位或6位整数。
数字按从小到大的顺序排列。
如果没有满足条件的,输出:-1
数字按从小到大的顺序排列。
如果没有满足条件的,输出:-1
样例输入
44
样例输出
99899
499994
589985
598895
679976
688886
697796
769967
778877
787787
796697
859958
868868
877778
886688
895598
949949
958859
967769
976679
985589
994499
499994
589985
598895
679976
688886
697796
769967
778877
787787
796697
859958
868868
877778
886688
895598
949949
958859
967769
976679
985589
994499
样例输入
60
样例输出
-1
解题思路
因为是左右对称的,所以只要判断一半就好。
代码
#include<stdio.h>
#include<algorithm>
using namespace std;
int num[100000];
int main()
{
int n;
int i,j,k,l,m;
int sum,now;
while(scanf("%d",&n)!=EOF)
{
sum=0;
for(i=1;i<10;i++)
{
k=0;
//now=i*2;
if(i*2<=n)
{
for(j=0;j<10;j++)
{
//now+=j*2;
if((i+j)*2<=n)
{
if(n-(i+j)*2>=0&&n-(i+j)*2<=9)
{
m=i*10000+j*1000+(n-(i+j)*2)*100+j*10+i;
num[sum++]=m;
}
for(l=0;l<10;l++)
{
//now+=l*2;
if((i+j+l)*2==n)
{
m=i*100000+j*10000+l*1000+l*100+j*10+i;
num[sum++]=m;
}
}
}
}
}
}
//原本定义了now来判断是否与n相等,但是观察我的程序,可以发现
//如果一次操作没被计入num,但是now的值已经相加进去了,并且会影响到下次比较
sort(num,num+sum);
if(sum==0)
printf("-1\n");
else
{
for(i=0;i<sum;i++)
printf("%d\n",num[i]);
}
}
return 0;
}