“七大数学难题”指的是千禧年大奖难题(Millennium Prize Problems),这是由美国克莱数学研究所(Clay Mathematics Institute, CMI)于2000年5月24日公布的七个最重要的数学问题。每个问题的解答者将获得100万美元的奖金。截至2024年,这七个问题中只有一个被解决,其余六个仍然悬而未决。以下是这七个问题的简介:
-
P vs NP问题:这是一个关于计算复杂性的问题,核心在于确定所有可以在多项式时间内验证的问题是否都可以在多项式时间内解决。
-
霍奇猜想(Hodge Conjecture):涉及代数几何中的霍奇类,即某些特定类型的复流形上的上同调类是否可以表示为代数循环的线性组合。
-
庞加莱猜想(Poincaré Conjecture):该猜想已经由俄罗斯数学家格里戈里·佩雷尔曼于2003年证明。它断言每一个单连通的、封闭的三维流形都同胚于三维球面。
-
黎曼假设(Riemann Hypothesis):关于黎曼ζ函数的所有非平凡零点都位于复平面上实部等于1/2的直线上。这是解析数论中最重要的未解决问题之一。
-
杨-米尔斯存在性和质量间隙(Yang–Mills Existence and Mass Gap):这个问题涉及到量子场论中杨-米尔斯理论的严格数学基础,特别是证明存在一个质量间隙,即使在没有质量的基本粒子的情况下也能解释为什么强相互作用力只在非常短的距离内有效。
-
纳维-斯托克斯存在性与光滑性(Navier–Stokes Existence and Smoothness):这个问题要求证明或反驳三维空间中的纳维-斯托克斯方程组是否有全局存在的、平滑的解。这些方程描述了流体动力学的行为。
-
贝赫和斯维讷通-戴尔猜想(Birch and Swinnerton-Dyer Conjecture):与椭圆曲线上的有理点有关,预测了椭圆曲线的秩与其L函数在s=1处的行为之间的关系。
这些问题不仅对数学本身具有深远的影响,而且对于物理学、工程学等多个领域都有着重要的意义。解决这些问题将极大地推动数学及相关学科的发展。