第七章 无穷级数

7.1 无穷级数

一、无穷级数的概念 7.1.1

【定义1】设 { a n } \{a_n\} {an} 是一个数列,称形式和
a 1 + a 2 + ⋯ + a n + ⋯ a_1 + a_2 + \cdots + a_n + \cdots a1+a2++an+无穷项级数,简称无穷级数(或级数),记作 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an a n a_n an 称为级数的通项。

S 1 = a 1 , S 2 = a 1 + a 2 , ⋯   , S n = a 1 + a 2 + ⋯ + a n S_1=a_1, S_2=a_1+a_2,\cdots,S_n=a_1+a_2+\cdots+a_n S1=a1,S2=a1+a2,,Sn=a1+a2++an,则 S n S_n Sn 叫做级数的部分和

【定义2】设 { S n } \{S_n\} {Sn} 是级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 的部分和数列。若 { S n } \{S_n\} {Sn} 收敛,且极限 lim ⁡ n = 1 S n = S \lim\limits_{n=1}S_n=S n=1limSn=S,则称级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 收敛, S 称为级数的和,记作 ∑ n = 1 ∞ a n = S \sum\limits_{n=1}^{∞}a_n=S n=1an=S

{ S n } \{S_n\} {Sn} 发散,即极限 lim ⁡ n = 1 S n \lim\limits_{n=1}S_n n=1limSn 不存在,则称级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 发散。

二、收敛级数的性质

1.收敛的必要条件

【定理1】如果级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 收敛,那么 lim ⁡ n → ∞ a n = 0 \lim\limits_{n \to ∞}a_n=0 nliman=0
【推论】如果 lim ⁡ n → ∞ a n \lim\limits_{n \to ∞}a_n nliman 不存在或不等于0,那么级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 发散。

2.收敛级数的线性运算

【定理2】若级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 收敛,c 为任意常数,则级数 ∑ n = 1 ∞ c ⋅ a n \sum\limits_{n=1}^{∞}c\cdot a_n n=1can 与级数 ∑ n = 1 ∞ ( a n + b n ) \sum\limits_{n=1}^{∞}(a_n + b_n) n=1(an+bn) 均收敛,且
∑ n = 1 ∞ c ⋅ a n = c ∑ n = 1 ∞ a n , ∑ n = 1 ∞ ( a n + b n ) = ∑ n = 1 ∞ a n + ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}c\cdot a_n=c\sum\limits_{n=1}^{∞} a_n,\qquad \sum\limits_{n=1}^{∞}(a_n + b_n)=\sum\limits_{n=1}^{∞}a_n+\sum\limits_{n=1}^{∞}b_n n=1can=cn=1an,n=1(an+bn)=n=1an+n=1bn

3.有限项的值不影响级数的敛散性

【定理3】增加、去掉或者改变级数的有限项,不会改变它的敛散性。

4.收敛级数的重组性质

【定理4】若级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 收敛,则在级数中任意添加括号后,得到的新级数仍收敛,且其和不变。

7.2 正项级数

一、正项级数的概念与性质 7.2.1

1.正项级数的定义

【定义3】若 a n > 0 a_n > 0 an>0 ,则称级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an正项级数

2.正项级数的性质

性质1(部分和数列单增) 若 a n > 0 a_n > 0 an>0 ,则 S = ∑ k = 1 ∞ a k S=\sum\limits_{k=1}^{∞}a_k S=k=1ak 单调递增。

性质2(收敛的充要条件)若 a n > 0 a_n > 0 an>0 ,则级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 收敛的充分必要条件是 S = ∑ k = 1 ∞ a k S=\sum\limits_{k=1}^{∞}a_k S=k=1ak 有上界,即存在一个实数 M,对所有的 n,都有 S n < M S_n<M Sn<M

二、正项级数的比较判敛法

1.比较判敛法的一般形式

【定理5】设 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 为两个正项级数,当 n > N时, a n ≤ b n a_n \le b_n anbn

(1) 如果 ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 收敛,那么 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 也收敛;

(2) 如果 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 发散,那么 ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 也发散。

2.比较判敛法的极限形式

【定理6】设 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 为两个正项级数,且 lim ⁡ n → ∞ a n b n = L \lim\limits_{n \to ∞}\dfrac{a_n}{b_n}=L nlimbnan=L
(1) 如果 0 < L < + ∞ 0<L<+∞ 0<L<+,那么 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 具有同样的敛散性;
(2) 如果 L = 0 L=0 L=0,且 ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 收敛,那么 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 也收敛;
(3) 如果 L = 0 L=0 L=0,且 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 发散,那么 ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 也发散。

3.比较判敛法的比阶形式

【定理7】设 a n > 0 a_n>0 an>0,且 lim ⁡ n → + ∞ n p a n = L \lim\limits_{n \to +\infty}n^pa_n=L n+limnpan=L,则

(1) 当 0 ≤ L < + ∞ 0 \le L<+\infty 0L<+,且 p > 1 p>1 p>1 时, ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 收敛;

(2) 当 0 < L ≤ + ∞ 0<L\le+\infty 0<L+,且 p ≤ 1 p\le1 p1 时, ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 发散

三、正项级数的积分判敛法

【定理8】设连续函数 f(x) 是区间 [ 1 , + ∞ ) [1, +∞) [1,+) 上的单调下降的正函数, a n = f ( n ) a_n=f(n) an=f(n),那么级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 收敛当且仅当反常积分 ∫ 1 + ∞ f ( x ) d x \int_1^{+\infty}f(x)\rm dx 1+f(x)dx 收敛。

7.3 比值判别法和根式判别法

一、正项级数的比值判敛法 7.3.1

【定理9】设 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 为正项级数,若对于 n > N,都有 u n + 1 u n ≤ q < 1 \dfrac{u_{n+1}}{u_n}\le q<1 unun+1q<1(为确定的数),则级数 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 收敛;若对于 n > N, u n + 1 u n ≥ 1 \dfrac{u_{n+1}}{u_n}\ge1 unun+11,则级数 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 发散。

【定理10】设 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 为正项级数。若 lim ⁡ n → + ∞ u n + 1 u n = r \lim\limits_{n \to +\infty}\dfrac{u_{n+1}}{u_n}=r n+limunun+1=r
(1) 当 0 ≤ r < 1 0\le r<1 0r<1 时,级数 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 收敛;
(2) 当 r > 1 r>1 r>1 时,级数 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 发散,且 lim ⁡ n → + ∞ u n = + ∞ \lim\limits_{n \to +\infty}u_n=+\infty n+limun=+
(3) 当 r = 1 r=1 r=1 时,级数的敛散性需要进一步判定。

二、正项级数的根式判敛法

【定理11】设 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 为正项级数,若存在 N,当 n > N, u n n ≤ q < 1 \sqrt[n]{u_n}\le q<1 nun q<1,则级数 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 收敛;
u n n ≥ 1 \sqrt[n]{u_n}\ge1 nun 1,则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^{∞}u_n n=1un 发散。

7.4 一般项级数

一、交错级数 7.4.1

1.交错级数的概念

【定义4】设 u n > 0 u_n>0 un>0,级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum\limits_{n=1}^{∞}(-1)^{n-1}u_n n=1(1)n1un 称为交错级数

2.交错级数的判敛法

【定理13】(Leibniz判敛法)假设正数列 { u n } \{u_n\} {un} n ≥ N n\ge N nN 时,满足:

(1) u n ≥ u n + 1 u_n \ge u_{n+1} unun+1

(2) lim ⁡ n → + ∞ u n = 0 \lim\limits_{n \to +\infty}u_n=0 n+limun=0

那么交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum\limits_{n=1}^{∞}(-1)^{n-1}u_n n=1(1)n1un 收敛。

3.交错级数的余项估计

【定理14】假设正数列 { u n } \{u_n\} {un} n ≥ N n\ge N nN 时,满足:

(1) u n > u n + 1 u_n > u_{n+1} un>un+1

(2) lim ⁡ n → + ∞ u n = 0 \lim\limits_{n \to +\infty}u_n=0 n+limun=0
那么,
∣ R n ∣ = ∣ S − S n ∣ < u n + 1 |R_n|=|S-S_n|<u_{n+1} Rn=SSn<un+1

一、绝对值判敛法 7.4.2

1.绝对收敛与条件收敛的概念

【定义5】如果级数 ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{∞}|a_n| n=1an 收敛,则称级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 绝对收敛。如果级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 收敛,而级数 ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{∞}|a_n| n=1an 发散,则称级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 条件收敛

2.绝对值判敛法

【定理15】若级数 ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{∞}|a_n| n=1an 收敛,则级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 收敛。

二、绝对收敛级数的性质

【定理16】记 a n + = 1 2 ( a n + ∣ a n ∣ ) , a n − = 1 2 ( a n − ∣ a n ∣ ) a_n^+=\dfrac{1}{2}(a_n+|a_n|), \quad a_n^-=\dfrac{1}{2}(a_n-|a_n|) an+=21(an+an),an=21(anan),则

(1) 级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 绝对收敛 ⟺ \Longleftrightarrow 级数 ∑ n = 1 ∞ a n + \sum\limits_{n=1}^{∞}a_n^+ n=1an+ ∑ n = 1 ∞ a n − \sum\limits_{n=1}^{∞}a_n^- n=1an 均收敛;

(2) 级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 条件收敛 ⟹ \Longrightarrow 级数 ∑ n = 1 ∞ a n + \sum\limits_{n=1}^{∞}a_n^+ n=1an+ ∑ n = 1 ∞ a n − \sum\limits_{n=1}^{∞}a_n^- n=1an 均发散,即
∑ n = 1 ∞ a n + = + ∞ , ∑ n = 1 ∞ a n − = − ∞ \sum\limits_{n=1}^{∞}a_n^+=+\infty, \quad \sum\limits_{n=1}^{∞}a_n^-=-\infty n=1an+=+,n=1an=

【定理17】如果级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 绝对收敛, ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1an 的一个重排,那么 ∑ n = 1 ∞ b n \sum\limits_{n=1}^{∞}b_n n=1bn 也绝对收敛,且 ∑ n = 1 ∞ b n = ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}b_n = \sum\limits_{n=1}^{∞}a_n n=1bn=n=1an

【定理18】设两个绝对收敛的级数 ∑ n = 1 ∞ u n = A \sum\limits_{n=1}^{∞}u_n=A n=1un=A ∑ n = 1 ∞ v n = B \sum\limits_{n=1}^{∞}v_n=B n=1vn=B,那么所有的 u i v j u_iv_j uivj 按任意的顺序得到的级数也绝对收敛,并且和等于 AB。 即 ∑ n = 1 ∞ u n ∑ n = 1 ∞ v n = A B \sum\limits_{n=1}^{∞}u_n\sum\limits_{n=1}^{∞}v_n=AB n=1unn=1vn=AB

7.5 幂级数

一、函数项级数的一般概念 7.5.1

【定义6】 设 { u n ( x ) } \{u_n(x)\} {un(x)} 是定义在区间 I 上的函数序列,称其形式和
u 0 ( x ) + u 1 ( x ) + ⋯ + u n ( x ) + ⋯ u_0(x)+u_1(x)+\cdots+u_n(x)+\cdots u0(x)+u1(x)++un(x)+ 为 I 上的一个函数项级数,记作 ∑ n = 0 ∞ u n ( x ) \sum\limits_{n=0}^{∞}u_n(x) n=0un(x)
通项 u n ( x ) u_n(x) un(x),部分和(函数) S ( x ) = ∑ k = 0 ∞ u k ( x ) S(x)=\sum\limits_{k=0}^{∞}u_k(x) S(x)=k=0uk(x),部分和函数序列 { S n ( x ) } \{S_n(x)\} {Sn(x)}

【定义7】若数项级数
u 0 ( x 0 ) + u 1 ( x 0 ) + ⋯ + u n ( x 0 ) + ⋯ u_0(x_0)+u_1(x_0)+\cdots+u_n(x_0)+\cdots u0(x0)+u1(x0)++un(x0)+ 收敛,则称 x 0 x_0 x0 是函数项级数的收敛点;级数 ∑ n = 1 ∞ u n ( x ) \sum\limits_{n=1}^{∞}u_n(x) n=1un(x) 所有收敛点构成的集合称为它的收敛域
在收敛域上,记 S ( x ) = ∑ n = 0 ∞ u n ( x ) S(x)=\sum\limits_{n=0}^{∞}u_n(x) S(x)=n=0un(x) S ( x ) S(x) S(x) 称为和函数

二、幂级数的有关概念

1.幂级数的定义

【定义8】形如
a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n + ⋯ a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^n+\cdots a0+a1(xx0)+a2(xx0)2++an(xx0)n+ 的函数项级数称为 x 0 x_0 x0 处的幂级数,记作 ∑ n = 0 ∞ a n ( x − x 0 ) n \sum\limits_{n=0}^{∞}a_n(x-x_0)^n n=0an(xx0)n

形如
a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n + ⋯ a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots a0+a1x+a2x2++anxn+ 的函数项级数称为 0 处的幂级数,记作 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn

2.幂级数的收敛区间

【定理19】(Abel定理)若幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn c ≠ 0 c\ne0 c=0 处收敛,则当 |x| < |c| 时, ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 绝对收敛;若幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 在 d 处发散,则当 |x| > |d| 时, ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 发散。

【定理20】若幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 既存在非零收敛点,又存在发散点,则存在唯一的正实数 R,满足:当 |x| < R 时,幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 绝对收敛;当 |x| > R 时,幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 发散。

【定义9】设 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 是 0 处的幂级数,若 R ≥ 0 R\ge0 R0 满足:

(1) 当 |x| < R 时, ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 绝对收敛;

(2) 当 |x| > R 时, ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 发散,

则称 R 是幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn收敛半径,开区间 ( − R ,   R ) (-R,\ R) (R, R) 称为幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn收敛区间

3.收敛半径的求法

7.6 函数的幂级数

一、几何级数的运用

当 |x| < 1 时
∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ⋯ = 1 1 − x \sum\limits_{n=0}^{∞}x^n=1+x+x^2+x^3+\cdots=\dfrac{1}{1-x} n=0xn=1+x+x2+x3+=1x1 将 x 替换成 -x,得到
1 1 + x = 1 − x + x 2 − x 3 + ⋯ \dfrac{1}{1+x} =1-x+x^2-x^3+\cdots 1+x1=1x+x2x3+ 将 x 替换成 x 2 x^2 x2,得到
1 1 − x 2 = 1 + x 2 + x 4 + x 6 + ⋯ \dfrac{1}{1-x^2} =1+x^2+x^4+x^6+\cdots 1x21=1+x2+x4+x6+ 1 1 + x 2 = 1 − x 2 + x 4 − x 6 + ⋯ \dfrac{1}{1+x^2} =1-x^2+x^4-x^6+\cdots 1+x21=1x2+x4x6+

二、幂级数和函数的性质

1.和函数的连续性

【定理21】幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 的和函数在其收敛域上连续。

2.和函数的可积性、逐项积分公式

定理22】幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 的和函数在其收敛域内的任何闭区间 [a, b] 上可积,且
∫ a b ( ∑ n = 0 ∞ a n x n ) d x = ∑ n = 0 ∞ ∫ a b a n x n d x \int_a^b(\sum\limits_{n=0}^{∞}a_nx^n)\rm dx=\sum\limits_{n=0}^{∞}\int_a^ba_nx^n\rm dx ab(n=0anxn)dx=n=0abanxndx
特别地,当 x 在收敛域内时,有
∫ 0 x ( ∑ n = 0 ∞ a n t n ) d t = ∑ n = 0 ∞ ∫ a x a n t n d t = ∑ n = 0 ∞ a n n + 1 x n + 1 \int_0^x(\sum\limits_{n=0}^{∞}a_nt^n)\rm dt=\sum\limits_{n=0}^{∞}\int_a^xa_nt^n\rm dt=\sum\limits_{n=0}^{∞}\dfrac{a_n}{n+1}x^{n+1} 0x(n=0antn)dt=n=0axantndt=n=0n+1anxn+1

【注】 ∑ n = 0 ∞ a n n + 1 x n + 1 \sum\limits_{n=0}^{∞}\dfrac{a_n}{n+1}x^{n+1} n=0n+1anxn+1 可以称为 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 的积分级数,其收敛半径小于原级数的收敛半径。

3.和函数的可导性、逐项求导公式

定理23】幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^{∞}a_nx^n n=0anxn 的和函数在其收敛区间 (-R, R) 内连续可导,且
( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 \big(\sum_{n=0}^{\infty}a_nx^n\big)'=\sum\limits_{n=0}^{∞}(a_nx^n)'=\sum\limits_{n=1}^{∞}na_nx^{n-1} (n=0anxn)=n=0(anxn)=n=1nanxn1

注1 ∑ n = 1 ∞ n a n x n − 1 \sum\limits_{n=1}^{∞}na_nx^{n-1} n=1nanxn1 称为原级数的导级数。其收敛半径小于幂级数的收敛半径。

注2】幂级数、导级数、积分级数收敛半径相等。收敛性只可能在区间端点上不同。

7.7 泰勒级数

一、泰勒级数的概念

定理24】如果函数 f(x) 可以写成 x 0 x_0 x0 处的幂级数
f ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + a 3 ( x − x 0 ) 3 + ⋯ = ∑ n = 0 ∞ a n ( x − x 0 ) n f(x) = a_0+a_1(x-x_0)+a_2(x-x_0)^2+a_3(x-x_0)^3+\cdots=\sum_{n=0}^{\infty}a_n(x-x_0)^n f(x)=a0+a1(xx0)+a2(xx0)2+a3(xx0)3+=n=0an(xx0)n 则有 a 0 = f ( x 0 ) ,   a 1 = f ′ ( x 0 ) ,   a 2 = f ′ ′ ( x 0 ) 2 ,   a 3 = f ′ ′ ′ ( x 0 ) 3 ! , ⋯   , a n = f ( n ) ( x 0 ) n ! a_0=f(x_0),\ a_1=f'(x_0), \ a_2=\dfrac{f''(x_0)}{2}, \ a_3=\dfrac{f'''(x_0)}{3!}, \cdots, a_n=\dfrac{f^{(n)}(x_0)}{n!} a0=f(x0), a1=f(x0), a2=2f(x0), a3=3!f(x0),,an=n!f(n)(x0)

定义10】幂级数 ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \sum\limits_{n=0}^{\infty}\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n n=0n!f(n)(x0)(xx0)n 称为函数 f(x) 在 x 0 x_0 x0 点的泰勒级数;当 x 0 = 0 x_0=0 x0=0 时,幂级数 ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! x n \sum\limits_{n=0}^{\infty}\dfrac{f^{(n)}(x_0)}{n!}x^n n=0n!f(n)(x0)xn 也称为函数 f(x) 的麦克劳林级数。

二、泰勒级数收敛于函数的条件

泰勒定理 设 f(x) 在包含 x 0 x_0 x0 的某开区间 (a, b) 内有直到 n+1 阶的导数,则当 x ∈ ( a , b ) x \in (a, b) x(a,b) 时,
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x) 其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( x − x 0 ) n + 1 ( n + 1 ) ! R_n(x) = f^{(n+1)}(ξ)\dfrac{(x-x_0)^{n+1}}{(n+1)!} Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1,ξ 介于 x 与 x 0 x_0 x0 之间。

定理25 (泰勒级数收敛于函数的充要条件)
f ( x ) = ∑ n = 0 ∞ ( x − x 0 ) n   ( ∣ x − x 0 ∣ < I ) ⇔ lim ⁡ n → ∞ f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 = 0 f(x)=\sum_{n=0}^{\infty}(x-x_0)^n\ (|x-x_0|<I) \Leftrightarrow \lim_{n \to \infty}\dfrac{f^{(n+1)}(ξ)}{(n+1)!}(x-x_0)^{n+1}=0 f(x)=n=0(xx0)n (xx0<I)nlim(n+1)!f(n+1)(ξ)(xx0)n+1=0 其中 ∣ x − x 0 ∣ < I |x-x_0|<I xx0<I, ξ 介于 x 与 x 0 x_0 x0 之间。

推论 设 f(x) 在包含 x 0 x_0 x0 的某开区间 (a, b) 内存在各阶导数,并且存在 M > 0,使得 f ( n ) ( x ) < M f^{(n)}(x)<M f(n)(x)<M 对任意的 x ∈ ( a , b ) x \in (a, b) x(a,b) 及任意的正整数 n 都成立,则当 x ∈ ( a , b ) x \in (a, b) x(a,b) 时,
f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x) = \sum\limits_{n=0}^{\infty}\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n f(x)=n=0n!f(n)(x0)(xx0)n

7.8 幂级数的简单应用

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值