动态规划(Dynamic Programming)模式(2. 序列状态型)

这篇博客探讨了动态规划中的序列状态型问题,通过分析LeetCode上的多个实例,如‘盗贼入室’、‘买卖股票’等,解释了如何在序列型问题中引入状态变量,并给出了相应的代码实现。博客指出,这类问题的关键在于识别最优策略并建立正确的转移方程。
摘要由CSDN通过智能技术生成

序列型和坐标型的最大区别是序列型不是简单的用坐标表示DP值,而一般需要加上状态。

https://leetcode.com/problems/house-robber/

按照解决DP问题的一般情况来,我们先分析最后一步。最后一步的最优策略中,有可能偷,也可能不偷最后一栋房。那么为了方便计算,一般我们可以考虑在dp中加入一个状态。

所以这个问题可以简化为是否偷I – 1套房子。那么我们可以将DP定义简化:

代码就很简单了:

public int rob(int[] nums) {
        int[] dp = new int[nums.length + 1];
        
        dp[0] = 0;
        dp[1] = nums[0];
        
        for (int i = 2; i <= nums.length; i++) {
                dp[i] = Math.max(dp[i - 2] + nums[i - 1], dp[i - 1]);
        }
        
        return dp[nums.length];
    }

https://leetcode.com/problems/house-robber-ii/

这道题因为房子连成一个圆圈,首尾相连,那么从0号房子出发和从1号房子出发是两个独立的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值