矩阵快速幂

fabonacci数列递推式:f[i]=f[i-1]+f[i-2]

对于给定的n,当n很大时,从第一项开始递推时间复杂度很大。考虑用矩阵做。

我们的目标是构造一个矩阵A满足下面式子:

注意一般将递推式右边写在左边,用来递推求出右边的Fn

可推出A为2*2的矩阵:

所以:

 ,则Fn=F0*A[0][0]+F1*A[1][0]=A[1][0]

斐波那契数列卷积

theme:给定n,求an,其中an递推式为:

solution:首先推出an递推式:

推出矩阵A:

下面编码采用An-1、fn等顺序不一样,可自行推导:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
#define far(i,t,n) for(int i=t;i<n;++i)
#define pk(a) push_back(a)
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
int inf=0x3f3f3f3f;
int mod=998244353;
 
struct mat
{
    ll var[10][10];
    mat()
    {
        far(i,0,10)
            far(j,0,10)
                var[i][j]=0;
    }
    void init()
    {
        var[0][0]=var[0][1]=var[0][2]=1;
        var[1][0]=1;
        var[2][2]=var[2][3]=1;
        var[3][2]=1;
    }
    mat operator*(mat b)const
    {
        mat ans;
        far(i,0,4)
            far(j,0,4)
            {
                ll sum=0;
                far(k,0,4)
                    sum=(sum+var[i][k]*b.var[k][j]%mod)%mod;
                ans.var[i][j]=sum;
            }
        return ans;
    }
};
 
mat quickMatPow(mat a,ll b)
{
    mat ans;
    far(i,0,4)
        ans.var[i][i]=1;
    while(b)
    {
        if(b%2)
            ans=ans*a;
        a=a*a;
        b/=2;
    }
    return ans;
}
 
int main()
{
    ll n;
    while(scanf("%lld",&n)!=EOF)
    {
        mat a;
        a.init();
        a=quickMatPow(a,n-1);
        printf("%lld\n",a.var[0][2]);
    }
}

求斐波那契数后n位数

就是用矩阵快速幂求,后n个数即求模,如后4位就是矩阵乘的时候将mod改为10000即可

求斐波那契数前n位数

斐波那契数列通式:

两边取10的对数:

log10(fi)=-0.5*log10(5.0)+i*1.0*log10((1+sqrt(5.0))/2.0);    

通过log10(fi)可求出fi的长度,如n=12345,则log10(n)=4.09149,则n的长度为4+1=5,(即n比10^4大一点),即n=10^4.09149=10^4*10^0.09149,所以通过10^0.09149就可以得到n科学计数法的系数1.2345,这时求前4位数*1000即可

所以求fibonacci数前4位代码为:

注意不足4位的要特判一下

double ans=-0.5*log10(5.0)+n*1.0*log10((1+sqrt(5.0))/2.0);
ans=ans-(int)ans;
ans=pow(10.0,ans);
ans=ans*1000;
int pre=(int)ans;

hdu:3117Fibonacci Numbers

theme:给定n,求Fibonacci[i]的前4位和后4位数。0<=n<=1e8

theme:给定n,求Fibonacci[i]的前4位和后4位数。0<=n<=1e8
#include<iostream>
#include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
#define far(i,t,n) for(int i=t;i<n;++i)
#define pk(a) push_back(a)
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
int inf=0x3f3f3f3f;
int mod=10000;

int f[50];

struct mat
{
    int var[10][10];
    mat()
    {
        far(i,0,10)
            far(j,0,10)
                var[i][j]=0;
    }
    void init()
    {
        var[0][0]=var[0][1]=var[1][0]=1;
    }
    mat operator*(mat b)const
    {
        mat ans;
        far(i,0,2)
            far(j,0,2)
            {
                int sum=0;
                far(k,0,2)
                    sum=(sum+var[i][k]*b.var[k][j]%mod)%mod;
                ans.var[i][j]=sum;
            }
        return ans;
    }
};

mat quickMatPow(mat a,int b)
{
    mat ans;
    far(i,0,2)
        ans.var[i][i]=1;
    while(b)
    {
        if(b%2)
            ans=ans*a;
        a=a*a;
        b/=2;
    }
    return ans;
}

int main()
{
    f[0]=0,f[1]=1;
    for(int i=2;i<=39;++i)
        f[i]=f[i-1]+f[i-2];
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        if(n<40)
        {
            printf("%d\n",f[n]);
            continue;
        }
        mat a;
        a.init();
        a=quickMatPow(a,n);
        int last=a.var[0][1];
        double ans=-0.5*log10(5.0)+n*1.0*log10((1+sqrt(5.0))/2.0);
        ans=ans-(int)ans;
        ans=pow(10.0,ans);
        ans=ans*1000;
        int pre=(int)ans;
        printf("%d...%04d\n",pre,last);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值