MYSQL CDC 同步到 PAIMON

参考:Mysql CDC | Apache Paimon

  1. 下载 flink-sql-connector-mysql-cdc-*.jar
  2. 将其放入 Flink 的 lib/ 目录
  3. 启动 Flink SQL Client
  4. 在 SQL CLI 中直接写 Flink SQL 创建 MySQL CDC 源表和 Paimon 结果表,然后 INSERT INTO 同步

     

    步骤如下:

  5. 下载 connector jar

    • 官方地址:https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/
    • 选择与你 Flink 版本兼容的版本(例如 Flink 1.18+ 推荐用 flink-sql-connector-mysql-cdc-3.0.1.jar
  6. 将 jar 放入 Flink lib 目录

    cp flink-sql-connector-mysql-cdc-3.0.1.jar $FLINK_HOME/lib/
  7. 同样放入 Paimon 的 jar

    • 从 https://paimon.apache.org/docs/master/engines/flink/ 下载对应版本的 paimon-flink-<version>.jar
    • 也放入 $FLINK_HOME/lib/
  8. 启动 Flink 集群

mysql中已有表:

SHOW VARIABLES LIKE 'binlog_format';

---------------------------------------------------------------------

MySQL → CDC → Paimon(MinIO)的实时 upsert 同步

在sreampark中配置Flink SQL任务

-- Step 1: MySQL CDC 源表(在 default_catalog 中)
CREATE TABLE mysql_users (
    user_id BIGINT,
    user_name STRING,
    email STRING,
    registration_date DATE,
    PRIMARY KEY (user_id) NOT ENFORCED
) WITH (
    'connector' = 'mysql-cdc',
    'hostname' = '192.168.1.247',
    'port' = '3306',
    'username' = 'root',
    'password' = '123456',
    'database-name' = 'emp',
    'table-name' = 'users'
);

-- Step 2: 创建 Paimon Catalog
CREATE CATALOG paimon_minio WITH (
    'type' = 'paimon',
    'warehouse' = 's3://warehouse/wh',
    's3.endpoint' = 'http://192.168.1.243:9000',
    's3.access-key' = 'minio',
    's3.secret-key' = 'minio@123',
    's3.region' = 'us-east-1',
    's3.path.style.access' = 'true'
);

-- ✅ 切换到 Paimon Catalog(关键!)
USE CATALOG paimon_minio;

-- Step 3: 在 paimon_minio.default 下创建表
CREATE TABLE IF NOT EXISTS users (
    user_id BIGINT,
    user_name STRING,
    email STRING,
    registration_date DATE,
    PRIMARY KEY (user_id) NOT ENFORCED
) WITH (
    'connector' = 'paimon',
    'bucket' = '4'
);

-- Step 4: 插入数据(注意源表仍属于 default_catalog)
INSERT INTO users
SELECT * FROM default_catalog.default_database.mysql_users;

执行任务:


查看日志:

查看数据:

--------------------------------------------------

在starrocks 进行相关查询:

创建database emp

然后创建 paimon_minio_catalog



DROP CATALOG IF EXISTS paimon_minio_catalog;

CREATE EXTERNAL CATALOG paimon_minio_catalog
PROPERTIES (
    "type" = "paimon",
    "paimon.catalog.type" = "filesystem",
    "paimon.catalog.warehouse" = "s3://warehouse/wh",
    "aws.s3.enable_ssl" = "false",
    "aws.s3.enable_path_style_access" = "true",
    "aws.s3.endpoint" = "http://192.168.1.243:9000",
    "aws.s3.access_key" = "minio",
    "aws.s3.secret_key" = "minio@123"
);

SET catalog = paimon_minio_catalog;
SHOW DATABASES;          -- 应显示 default
SELECT * FROM default.users LIMIT 1;

SHOW CATALOGS;

SET catalog = paimon_minio_catalog;

<think>嗯,用户问的是如何将Paimon的数据表同步MySQL数据库。首先,我需要回顾一下Paimon的基本概念和相关工具。记得Paimon是一个流批统一的湖存储格式,通常和Flink一起使用,特别是Flink CDC同步数据。之前有用户提到过使用Flink CDC连接MySQLPaimon,但现在的问题是要反过来,从PaimonMySQL。 首先,用户可能需要使用Flink的连接器,比如JDBC连接器来写入MySQL。Apache Paimon的文档里应该会有关于如何配置Catalog以及如何通过Flink作业读取Paimon表,然后写入到其他目标库的方法。比如,用户需要创建一个Paimon Catalog,然后通过Flink SQL将数据从Paimon表读取出来,再通过JDBC Sink写入到MySQL。 接下来,步骤可能包括:配置Paimon Catalog,确保Flink作业能访问到Paimon表;然后使用Flink的JDBC连接器配置MySQL的连接信息,比如URL、用户名、密码等。可能需要编写一个INSERT INTO语句,将SELECT出来的Paimon表数据插入到MySQL表中。此外,还要考虑数据类型的映射是否正确,主键或唯一键的设置,以及如何保证数据同步的实时性,比如通过流式处理。 另外,用户可能需要处理表结构变更的问题。如果Paimon表的schema有变化,如何自动同步MySQL?这时候可能需要使用Flink的CDC功能或者ALTER TABLE语句来更新MySQL的表结构。不过MySQL连接器可能不支持自动同步结构变更,所以用户可能需要手动处理或者通过其他工具监控结构变化。 还有,性能优化方面,比如批量写入、调整检查点间隔、并行度设置等,都可能影响同步的效率和稳定性。需要确保Flink集群的资源足够,并且配置合理。 最后,用户可能需要验证同步的数据是否正确,包括数据一致性和实时性测试。还可以考虑监控同步任务的状态,处理可能出现的错误,比如网络中断或数据类型不匹配的问题。 总结下来,步骤应该是:配置Catalog -> 编写Flink SQL作业 -> 处理结构变更 -> 优化性能 -> 验证和监控。同时,参考已有的Paimon和Flink CDC文档,确保步骤正确。</think>以下是将Paimon表数据同步MySQL数据库的具体实现步骤: ### 一、环境准备 1. 安装Flink集群(版本需与Paimon兼容) 2. 下载Paimon的Flink连接器JAR包(如paimon-flink-0.6-incubating.jar) 3. 下载Flink JDBC连接器(flink-connector-jdbc_2.12) ### 二、核心配置流程 1. **创建Paimon Catalog** ```sql CREATE CATALOG paimon_catalog WITH ( 'type' = 'paimon', 'warehouse' = 'hdfs://path/to/warehouse' ); ``` 2. **配置MySQL Sink表** ```sql CREATE TABLE mysql_sink ( id INT PRIMARY KEY, order_time TIMESTAMP(3), amount DECIMAL(10,2) ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://localhost:3306/mydb', 'table-name' = 'orders', 'username' = 'root', 'password' = '123456', 'sink.buffer-flush.max-rows' = '1000', -- 批量写入配置 'sink.buffer-flush.interval' = '60s' ); ``` 3. **执行数据同步SQL** ```sql INSERT INTO mysql_sink SELECT id, order_time, amount FROM paimon_catalog.mydb.orders_table /*+ OPTIONS('scan.mode'='latest') */; -- 指定读取最新数据 ``` ### 三、高级配置说明 1. **流式同步实现** ```sql INSERT INTO mysql_sink SELECT id, order_time, amount FROM paimon_catalog.mydb.orders_table /*+ OPTIONS('scan.mode'='continuous') */; -- 持续监听数据变更 ``` 2. **动态表结构同步** ```properties # 在Flink配置文件中添加: table.dynamic-table-options.enabled=true ``` 3. **异常处理机制** ```sql CREATE TABLE mysql_sink (...) WITH ( ... 'sink.max-retries' = '3', -- 失败重试次数 'sink.parallelism' = '4' -- 写入并行度 ); ``` ### 四、验证与监控 1. 通过MySQL客户端查询目标表数据: ```sql SELECT COUNT(*) FROM orders; ``` 2. 在Flink Web UI观察作业运行状态: $$ \text{作业吞吐量指标} = \frac{\text{处理记录数}}{\text{时间窗口}} $$ 3. 使用Paimon自带的系统表监控: ```sql SELECT * FROM paimon_catalog.sys.snapshots; ``` ### 五、常见问题解决方案 1. **数据类型映射错误**:需手动处理TIMESTAMP类型精度差异 2. **主键冲突**:在MySQL Sink表定义中显式声明PRIMARY KEY 3. **网络中断恢复**:通过Flink Checkpoint机制保证精确一次语义
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值