NRE

NRE  NRE是Non-Recurring Engineering的缩写,NRE费用即一次性工程费用,是指集成电路生产成本中非经常性发生的开支,明确地说就是新的集成电路产品的研制开发费.新产品开发过程中的设计人工费,设计用计算机软硬件设备折旧费以及试制过程中所需的制版,工艺加工,测试分析等费用都是研发过程中的一次性开支,称为NRE.这些费用有赖大量生产后的利润赚回﹐对于国内某些ODM/OEM厂商而言﹐有些客户会同意支付此一NRE费用﹐尤其是那些开发中途停止﹐或是完成后没有生产的开发产品﹐通常客户会支付此一NRE费用!一旦产品开发成功,只要用研制时制好的版子进行制造加工和产品测试即可,这是产品批量生产时经常发生的开支。
### Label Studio 中 NRE 数据标注方法 Label Studio 是一种灵活的开源工具,用于标记各种类型的数据,包括文本、图像和音频等。对于命名实体关系抽取(NRE),其核心目标是从文本中标记出实体及其之间的关系。以下是有关如何在 Label Studio 中完成这一任务的具体说明: #### 配置文件设置 要在 Label Studio 中实现 NRE 的数据标注,首先需要配置项目的 `config.xml` 文件。该文件定义了界面布局以及支持的任务类型。以下是一个适用于 NRE 的基本 XML 配置示例[^1]: ```xml <View> <Text name="text" value="$text"/> <Labels name="labels" toName="text"> <Label value="Person"/> <Label value="Location"/> <Label value="Organization"/> </Labels> <Relation name="relation" from="labels" to="labels"> <Choice value="Works_for"/> <Choice value="Born_in"/> </Relation> </View> ``` 上述配置允许用户标注两种类型的对象:实体(如 Person, Location)和它们之间的关系(如 Works_for, Born_in)。这一步骤确保了后续标注工作的标准化。 #### 实体与关系标注流程 当使用 Label Studio 进行实际操作时,具体步骤如下: - **实体识别**:先选中文本中的片段并为其分配合适的类别标签(例如,“Steve Jobs”被标记为人名实体 “Person” 类型)。 - **建立关联**:接着连接已有的两个或多个实体节点来表示特定的关系种类。比如,在句子 “Steve Jobs was born in San Francisco.” 中,可以创建一条从实体 “Steve Jobs” 到另一个实体 “San Francisco”,并将这条边命名为 “Born_in”。 这种交互方式使得复杂文档内的多层次信息能够清晰呈现出来,并为进一步分析提供了基础材料[^2]。 #### 自动化辅助功能 考虑到手动执行如此精细的工作可能会非常耗时费力,因此许多现代化平台都引入了一些智能化手段帮助提高效率。例如基于 BiLSTM 和注意力机制的方法可用于初步预测可能存在的实体边界位置;而某些更先进的算法甚至可以直接给出候选关系建议供人工确认调整[^3]。 另外值得注意的是,尽管这些自动化工具能够在一定程度上减轻负担,但由于自然语言本身的歧义性和多样性特点决定了最终质量仍然依赖于高水平的人类判断参与其中[^5]。 --- ### 示例代码展示 下面是一段简单的 Python 脚本演示如何利用 OpenNRE 库加载预训练模型并对新样本做出推理预测[^4]: ```python from opennre import encoder, model, framework # 加载编码器和框架 sentence_encoder = encoder.BERTEntityEncoder() rel_model = model.SoftmaxNN(sentence_encoder, len(relations)) framework = framework.PairwiseFramework(train_path='train.txt', val_path='val.txt') # 开始测试新的输入句 test_sentence = 'The company Apple is located in California.' result = framework.infer(test_sentence) print(result) ``` 此脚本假设存在名为 `relations` 的列表存储所有可接受的关系名称,并且路径指向相应的训练验证集文件。运行后会返回给定句子中最有可能成立的一组或多组关系描述。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值