【机器学习-周总结】-第4周

以下是本周学习内容的整理总结,从技术学习实战应用科研辅助技能三个方面归纳:


📘 一、技术学习模块:TCN 基础知识与结构理解

🔹 博客1:【时序预测05】– TCN(Temporal Convolutional Networks)基础概念

[链接]

  • 核心思想
    • 使用一维卷积(1D Conv)+ 空洞卷积(Dilated Conv) 建模时序关系;
    • 采用因果卷积(Causal Conv) 避免未来信息泄露;
    • 残差连接(Residual Block) 用于提升深层网络的训练稳定性。
  • 优势
    • 更易于并行训练;
    • 捕捉长距离依赖能力强;
    • 参数可控,易调优;
  • 结构核心
    • 多层残差块;
    • 每层卷积层使用不同的dilation rate;
    • 输出尺寸与输入保持一致(padding处理);

📌 启示:TCN 是 RNN/LSTM 的高效替代方案,尤其在需要并行计算和长序列建模时效果更佳。


🔹 博客2:【TCN实战】- 完整代码 + 注释解析

[链接]

  • 内容结构
    • 数据加载与滑动窗口生成;
    • TCN模型结构搭建(基于 PyTorch);
    • 模型训练与预测可视化;
  • 关键代码点
    • 使用 nn.Conv1d 构建多层残差模块;
    • dilation、kernel size、padding控制 receptive field;
    • 注意输出reshape及多步预测场景下的处理方式。

📌 启示:实战帮助理解 TCN 如何融合在预测任务中,也为未来自定义结构提供代码参考模板。


✍️ 二、科研辅助技能:论文写作与绘图方法总结

🔹 博客3:科研论文写作与图表绘制工具总结

[链接]

  • 内容涵盖
    • 结构化写作技巧(IMRaD框架);
    • 图表绘制推荐:
      • Origin、Matplotlib、PPT美化插件、Graphviz 等;
    • 推荐资源网站如:Tableau Public、SciDraw、论文图复现仓库等
  • 写作建议
    • 段落首句明确主题;
    • 先图后文,图注简洁;
    • 模型结构图/流程图建议用draw.ioLaTeX TikZ绘制。

📌 启示:图文并茂的表达不仅增强论文可读性,也是科研成果传播力的关键。早规划、重逻辑、注细节是写作核心。


🧰 三、CSDN Markdown 技巧笔记(自用技巧)

🔹 博客4:CSDN Markdown 官方使用技巧

[链接]

  • 常用语法
    • 表格:| 表头 | 内容 | + :--:对齐方式;
    • 代码块:使用 ```+ 语言名;
    • 数学公式:支持LaTeX格式(需要开启数学公式显示);
  • 排版优化
    • 使用 HTML 标签如 <br> 实现更细节布局;
    • 引用/高亮/目录支持丰富;
  • 附加技巧
    • 图片可引用外链图床;
    • 支持 CSDN 专属块(如 Info、Warning 样式盒)增强阅读体验。

📌 启示:良好的排版直接提升内容专业性,建议写博客时养成结构清晰、分段合理、图文并茂的发布习惯。


🧠 总结与思考

模块内容收获延伸方向
技术TCN基础 + 实战博客掌握TCN核心结构、实现原理与实用性对比LSTM/Transformer,结合滑坡预测应用
写作论文结构与绘图方法强化论文逻辑构建与图表表达能力制作专属图模板、写作风格训练
工具CSDN Markdown用法提升博客排版效率与专业度可延伸到知乎、Notion、Typora等平台
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值