
【ShuQiHere】数据骑士的机器学习之旅
文章平均质量分 92
这是一个关于数据骑士的故事,他们手持代码之剑,披荆斩棘,在机器学习的王国中探险。从简单的算法城堡,到深度学习的巨龙巢穴,每一篇文章都是一场精彩的战斗。快来和我们一起,打怪升级,成为数据世界里的传奇英雄吧!
ShuQiHere
I throw my burden onto the blog, thus....
展开
-
【ShuQiHere】从自监督到人类反馈:一览大语言模型(LLM)训练及其数据集的“前世今生” ☕️
大语言模型(LLM)已在对话、写作、翻译、搜索等领域展现出令人惊艳的“类通用智能”潜质。那么,它们究竟是如何一步步“成长”到如此能说会道、似人非人的地步的呢?本文将带你探秘 LLM 的训练方法和数据构建过程。我们将从历史与背景、技术演化、数据集“真容”、开源资源推荐等方面深度剖析,带你全方位了解大语言模型!原创 2025-01-03 23:59:57 · 292 阅读 · 0 评论 -
【ShuQiHere】算法的开枝散叶:从机器学习到深度学习的模型总结
人工智能(AI)在过去十几年里经历了跨越式发展:从最初的计算机象征式推理到如今大行其道的深度学习,AI正逐步渗透到我们生活和工作的各个领域。然而,AI到底是如何一步步走到今天的?它为什么如此“聪明”?在这篇文章中,我们将通过梳理从机器学习到深度学习的知识要点,为您呈现一幅全面的AI知识图谱。让我们一起领略AI的强大魅力吧!🤗原创 2025-01-03 10:08:45 · 1015 阅读 · 0 评论 -
【ShuQiHere】 2024 Kaggle Playground Series: 保险保费预测挑战分享
欢迎来到我的 Kaggle 2024 Playground 系列比赛分享!😄这次我参加的是 Kaggle Playground 系列的一个新挑战,目标是预测保险保费。这次的比赛非常有意思。其核心任务是通过多个因素来预测客户的保险保费金额,涉及的特征包括客户的年龄、收入、健康状况等。🏥💸对于保险公司来说,预测客户的保费是一个非常重要的任务。通过准确的预测,保险公司不仅可以优化定价策略,还可以提升客户体验。在这个过程中,机器学习技术起到了至关重要的作用,它能帮助公司根据客户的不同特征,智能地调整保原创 2024-12-30 15:23:27 · 1362 阅读 · 0 评论 -
【ShuQiHere】 集成学习:提升模型性能的有效策略
集成学习的基本思想非常简单:通过将多个模型组合在一起,使得它们的预测结果更为准确。集成学习的关键在于,它通过整合多个“弱学习器”(即单个模型的预测能力较弱)来生成一个强大的“强学习器”。原创 2024-12-30 15:08:32 · 1518 阅读 · 0 评论 -
【ShuQiHere】️关于NVIDIA-SMI:你必须知道的是
在快速发展的人工智能(AI)领域,利用图形处理单元(GPU)的强大计算能力对于加速计算任务至关重要。无论是训练深度学习模型还是运行复杂的仿真,了解如何有效管理GPU资源都能显著提升你的工作效率和结果。🚀在本文中,我们将深入探讨每位AI研究生都应熟悉的NVIDIA-SMI命令。这些命令将帮助你监控GPU性能、管理资源并排除故障,确保你可以专注于研究和开发。🌟原创 2024-11-02 19:36:14 · 882 阅读 · 0 评论 -
【ShuQiHere】数据科学与人工智能必备的 Python 包大全
在数据科学与人工智能的世界里,拥有一套强大的 Python 工具包可以让您的研究和项目事半功倍。本文将详细介绍这些必备的包,每个包都附有用途、特点、安装方式,以及实际的代码示例和学习资源,让您轻松上手!🚀原创 2024-11-01 00:33:22 · 1064 阅读 · 0 评论 -
【ShuQiHere】 机器学习中的网格搜索(Grid Search)超参数调优
在机器学习中,模型的性能不仅取决于算法的选择,还取决于超参数(Hyperparameters)的设置。超参数是模型在训练之前需要设置的参数,它们控制着学习过程的行为。正确地选择超参数可以显著提升模型的性能。🎯然而,找到最佳的超参数组合并非易事。为了解决这个问题,**网格搜索(Grid Search)**应运而生。它是一种系统地遍历预定义的超参数组合,以找到最佳模型性能的方法。原创 2024-10-18 04:00:00 · 1746 阅读 · 0 评论 -
【ShuQiHere】Logic Programming:探索逻辑编程的奇妙世界
在计算机科学的广阔领域中,**逻辑编程(Logic Programming,LP)**是一颗璀璨的明珠。它提供了一种全新的方式来思考和解决问题,让我们能够以声明性的方式定义问题,而不是以传统的命令式方式编写解决方案。在本文中,我们将深入探讨逻辑编程的概念、基础以及如何在Python中应用它。准备好了吗?让我们开始吧!🚀原创 2024-10-18 03:45:00 · 1124 阅读 · 0 评论 -
【ShuQiHere】距离度量在 KNN 算法中的应用:欧几里得距离与曼哈顿距离
在机器学习和数据挖掘领域,**K 最近邻算法**(K-Nearest Neighbors,简称 **KNN**)是一种简单 yet 强大的非参数监督学习方法。KNN 的核心在于度量**样本之间的距离**,从而确定样本的相似性。距离度量的选择直接影响 KNN 的性能和准确性。在本文中,我们将深入探讨两种常用的距离度量方法:**欧几里得距离**(Euclidean Distance)和**曼哈顿距离**(Manhattan Distance),并探讨它们在 KNN 算法中的应用与区别。💡原创 2024-10-17 01:07:12 · 1190 阅读 · 0 评论 -
【ShuQiHere】探索高维数据的降维利器:主成分分析(PCA)系统讲解
在数据科学和机器学习中,降维是处理复杂数据集的重要工具。主成分分析(**PCA**,Principal Component Analysis)是最常用的线性降维方法之一,通过减少特征数量,同时保留数据中最有价值的特征,使我们能够高效处理高维数据。PCA不仅可以简化模型,还能帮助我们更好地理解数据。本文将系统性地介绍PCA的基本原理、数学推导、代码实现以及其应用场景,帮助你在实际工作中充分利用这一强大的工具。📊原创 2024-10-16 00:00:00 · 2873 阅读 · 0 评论 -
【ShuQiHere】K近邻算法(KNN)全面解析:从理论到实现
K近邻算法()是一种经典且直观的机器学习算法,广泛用于分类和回归任务。它是懒惰学习算法的一种,意指在训练阶段没有显式的建模过程,而是在预测阶段依据数据之间的距离进行推断。KNN不需要训练模型,它的核心思想是**“相似的样本具有相似的输出”**。📜历史背景:KNN最早在1951年由Evelyn Fix和Joseph Hodges提出。它之所以能在数十年后依然广泛应用,是因为它的简单性、非参数特性以及其良好的表现,特别是在小数据集或低维度任务上非常有效。🔮实际意义。原创 2024-10-13 03:35:58 · 1587 阅读 · 0 评论 -
【ShuQiHere】均值漂移算法详解:原理、实现及应用
在机器学习的世界里,**聚类**(Clustering)是非常重要的任务之一。聚类的目的是将数据按照相似性划分为不同的组群,以便我们更好地理解数据背后的结构。**均值漂移**(Mean Shift)是一种强大且灵活的非参数聚类算法,特别适合那些数据簇数量未知的场景。本文将详细介绍均值漂移算法的原理、实现方法,以及其在实际中的应用场景。🤖📊原创 2024-10-11 00:00:00 · 1773 阅读 · 0 评论 -
【ShuQiHere】 解密诺奖得主:约翰·霍普菲尔德与人工神经网络的革命
约翰·霍普菲尔德和杰弗里·辛顿的工作展示了物理学、计算机科学和生物学的完美融合。他们的研究证明了跨学科合作的重要性,也为人工智能技术的未来发展铺平了道路。从基础理论到实用应用,他们的贡献不仅赢得了诺贝尔奖的认可,更是改变了整个科学和技术领域的面貌。原创 2024-10-10 00:00:00 · 2147 阅读 · 0 评论 -
【ShuQiHere】 DBSCAN 聚类算法详解:公式、代码与应用
**DBSCAN**(*Density-Based Spatial Clustering of Applications with Noise*,基于密度的聚类算法)是一种通过密度来确定簇的无监督学习算法。与 K-means 不同,DBSCAN 不需要事先指定簇的数量,而是根据数据点的密度来自动确定簇的数量。同时,DBSCAN 能识别数据中的噪声点,并且适用于复杂形状的簇。🎯DBSCAN 在实际应用中非常有用,特别是在处理地理数据、天文数据、以及需要识别噪声点的场景中。它的灵活性使得它在复杂数据集上表原创 2024-10-09 03:00:00 · 1230 阅读 · 2 评论 -
【ShuQiHere】 K-means 聚类算法详解:公式、代码与实战
K-means 是一种常见的**无监督学习算法**(*Unsupervised Learning Algorithm*),用于解决**聚类**(*Clustering*)问题。该算法的目标是将数据集中的 \(n\) 个数据点分成 \(K\) 个簇(*Clusters*),使得同一簇内的数据点之间尽可能相似,而不同簇的数据点尽可能不同。🧑🏫K-means 在市场细分、图像压缩、模式识别等领域得到了广泛应用。其因简单高效而受欢迎,但要充分利用它,理解其工作原理至关重要。原创 2024-10-09 03:00:00 · 4046 阅读 · 0 评论 -
【ShuQiHere】 从零开始掌握随机森林与极端随机森林:原理、推导与实战
在当今数据驱动的时代,**机器学习(Machine Learning)** 已成为分析和理解大量复杂数据的关键工具。**随机森林(Random Forest)** 和 **极端随机森林(Extremely Randomized Trees, ExtraTrees)** 是两种广泛应用于分类和回归任务的强大集成算法。本篇文章旨在从零开始,带领读者深入理解随机森林和极端随机森林的原理、理论推导和实际应用。我们将通过丰富的例子、详细的解释、代码实现和数学推导,帮助您全面掌握这些算法,并能够在实际项目中灵活应用原创 2024-10-03 00:00:00 · 929 阅读 · 0 评论 -
【ShuQiHere】Windows远程桌面配置教程:远程桌面协议(Remote Desktop Protocol, RDP)及其使用方法 ️✨
Windows远程桌面协议(Remote Desktop Protocol, RDP)是一种用于通过网络远程访问和控制计算机的专有协议。RDP允许用户通过图形化界面进行远程计算机操作,如文件传输、应用程序管理和系统维护。通过RDP,用户可以访问目标计算机的桌面环境,并像在本地操作一样进行各类操作。该协议不仅支持音频和视频的传输,还能够通过剪贴板(clipboard)共享等方式提升远程操作体验。🌍Windows远程桌面协议(RDP)提供了强大、安全且高效的远程管理功能,尤其适合企业级用户。原创 2024-09-24 00:00:00 · 6651 阅读 · 0 评论 -
【ShuQiHere】解放你的背包:SSH 带你远程使用 Jupyter Notebook!
SSH 是一种用于远程登录和数据传输的加密网络协议,首次在 1995 年由芬兰计算机科学家开发。彼时,网络安全问题层出不穷,黑客攻击频发,数据泄露成了人们最为担忧的事情。SSH 的出现,如同在不安全的街头为你的数据加了一道安全锁🔒。它不仅加密了你的通信,还验证了双方的身份,确保信息在传输过程中的隐私和完整性。想象一下,以前的明文协议就像在公共场合大声宣告你的密码,而 SSH 则让你的信息如同在保险箱中一般安全。原创 2024-09-24 00:00:00 · 1694 阅读 · 0 评论 -
【ShuQiHere】Scikit-Learn实战:六大经典机器学习模型的代码实现,看这一篇就够了
本文介绍了Scikit-Learn中的经典机器学习模型,包括线性回归逻辑回归决策树随机森林支持向量机K近邻和梯度提升。每种模型都有其独特的特点和适用场景,选择合适的模型能够显著提高预测准确性。通过具体的代码示例与深入的解析,我们希望你对这些模型有了更全面的理解,能够在实际项目中灵活运用。未来,随着数据和技术的不断发展,机器学习的应用场景将更加广泛,期待你在这一领域的探索和实践!🌈如果你对某个模型有更深入的兴趣,或者有任何问题,欢迎留言讨论,我们共同学习进步!😊。原创 2024-09-23 02:00:00 · 1546 阅读 · 0 评论 -
【ShuQiHere】BERT神经网络:用 4,000 字带你深入理解基于 Transformer 的双向编码表示
在自然语言处理(Natural Language Processing, **NLP**)领域,**BERT**(Bidirectional Encoder Representations from Transformers)无疑是近年来最具影响力的模型之一。自 2018 年由 Google 提出以来,BERT 在问答、文本分类、命名实体识别等众多 NLP 任务中都取得了前所未有的成绩。那么,BERT 究竟是如何工作的?它为何如此强大?本文将带你从输入到输出,深入解析 BERT 的核心原理,并通过实例演示如原创 2024-09-22 00:00:00 · 1196 阅读 · 0 评论 -
【ShuQiHere】 支持向量机(SVM)详解:从理论到实践,这一篇就够了
*支持向量机(Support Vector Machine,SVM)**是一种监督学习模型,用于解决分类和回归问题。它的核心思想是找到一个能够以最大间隔将不同类别的数据分开的超平面。原创 2024-09-19 00:00:00 · 1976 阅读 · 0 评论 -
【ShuQiHere】超详细!:从输入到输出,用 8,000 字带你彻底理解Transformer神经网络结构
今天我们将全面探讨 **Transformer** 模型的全部知识点,涵盖其背景、基础概念、模型结构、注意力机制、多头注意力、位置编码、训练技巧,以及在自然语言处理中的应用。本文还将通过丰富的例子和代码示例,帮助你深入理解 Transformer 的内部工作原理。希望这篇万字长文能帮助你全面深入地理解 Transformer!🚀原创 2024-09-19 00:00:00 · 877 阅读 · 0 评论 -
【ShuQiHere】从 FNN 到 RNN:用股票价格预测一步步理解神经网络的演化
通过逐步构建和理解 RNN,我们可以清楚地看到它是如何从 FNN 演化而来的。RNN 通过引入循环结构和隐藏状态,赋予了网络“记忆”功能,从而能够更好地处理时间序列数据。然而,随着模型的复杂性增加,RNN 也面临了一些挑战,如梯度消失和长期依赖问题。这一演化展示了神经网络在处理复杂任务时的潜力与局限,为后续的模型改进(如 LSTM 和 GRU)奠定了基础。原创 2024-08-31 00:09:08 · 1684 阅读 · 0 评论 -
【ShuQiHere】卷积神经网络(CNN):从输入到输出的逐层解析
在数学上,卷积操作可以表示为:SijX∗Kij∑m∑nXimjn⋅KmnSijX∗Kijm∑n∑Ximjn⋅Kmn( X ) 是输入图像矩阵。( K ) 是卷积核矩阵(如 3x3 的矩阵)。( S(i, j) ) 是输出特征图的像素值。通过卷积操作,卷积核能够捕捉到图像中的局部模式,如边缘、纹理等。例如,一个用于检测水平边缘的 3x3 卷积核可能如下:K−1−1−100011。原创 2024-08-31 00:05:27 · 1259 阅读 · 0 评论 -
【ShuQiHere】GRU vs LSTM:搞清楚它们的区别和适用场景
GRU和LSTM都是强大的工具,各有优缺点。理解它们的区别和适用场景,能够帮助你在不同任务中做出更优的选择。总的来说,LSTM适合处理复杂的长序列依赖,而GRU更适合在计算资源有限或需要快速响应的场景中使用。希望这篇文章能帮助你更好地理解这两者的区别,并在实际项目中灵活应用!实例总结:在情感分析任务中,如果处理的是长篇文章且需要捕捉复杂的情感变化,LSTM是首选;而对于短文本或需实时处理的场景,GRU则能提供更高效的解决方案。通过理解两者的特点,可以根据实际需求选择最合适的模型,提升任务表现。原创 2024-08-28 04:02:52 · 1370 阅读 · 0 评论 -
【ShuQiHere】Transformer 模型:从输入到输出的逐层解析
Transformer 模型由 Vaswani 等人在 2017 年提出,是一种基于自注意力机制(Self-Attention Mechanism)的深度学习模型,主要用于自然语言处理任务,如机器翻译、文本生成、问答系统等。与传统的循环神经网络(RNN)和长短期记忆网络(LSTM)不同,Transformer 模型不依赖于顺序处理数据,而是通过自注意力机制一次性处理整个输入序列。这种并行处理的方式,使得 Transformer 在捕捉长距离依赖关系和提高计算效率方面表现得尤为出色。原创 2024-08-25 00:25:37 · 1197 阅读 · 0 评论 -
【ShuQiHere】语言处理的两次飞跃(下):自注意力机制的未来
在上一篇文章中,我们探讨了Seq2Seq模型如何在序列到序列任务中取得显著的突破,但同时也面临了一些局限性,如信息压缩和长距离依赖问题。为了解决这些问题,自注意力机制应运而生。通过引入动态关注机制,自注意力极大地提升了模型的灵活性和性能,并为更复杂的模型(如Transformer)奠定了基础。在本文中,我们将深入探讨自注意力机制的工作原理,特别是其背后的矩阵运算,并通过具体的例子来详细说明这些概念。在深度学习模型中,输入的文本或序列通常被转换为向量或矩阵表示,使得模型能够利用矩阵运算来处理这些数据。原创 2024-08-26 01:04:56 · 654 阅读 · 0 评论 -
【ShuQiHere】SGD vs BGD:搞清楚它们的区别和适用场景
在机器学习中,我们通常会构建一个模型来预测某些输出。以线性回归为例,模型的目标是找到一条最佳的直线,来描述输入数据与输出数据之间的关系。我们可以把这条直线用一个数学公式表示为:yw⋅xbyw⋅xb其中,( w ) 是斜率,表示输入 ( x ) 每变化一个单位,输出 ( y ) 变化的程度;( b ) 是截距,表示当输入 ( x ) 为零时,输出 ( y ) 的值。通过训练,我们希望找到最合适的 ( w ) 和 ( b ) 值,使得这条直线能尽可能准确地预测输出 ( y )。原创 2024-08-28 04:00:13 · 1060 阅读 · 0 评论 -
【ShuQiHere】语言处理的两次飞跃(上):解密Seq2Seq模型
其中,(V) 是词汇表的大小,(y_{t,i}) 是目标输出序列在时间步 (t) 对应的第 (i) 个词的指示符(即一个one-hot向量),(\hat{y}_{t,i}) 是模型在时间步 (t) 预测为第 (i) 个词的概率。Seq2Seq模型,全称为序列到序列模型,是一种能够将一个可变长度的输入序列映射到一个可变长度的输出序列的深度学习模型。其中,(\mathbf{s}_t) 是解码器在时间步 (t) 的隐藏状态,(g) 是RNN单元的计算函数,(\mathbf{W}) 是用于生成输出的权重矩阵。原创 2024-08-26 00:30:17 · 1029 阅读 · 0 评论 -
【ShuQiHere】“从 One-Hot 到 GPT:窥探词表示技术的演变”
通过词表示,我们可以将文本中的词语转化为计算机能够理解和处理的数字向量,这为各种 NLP 任务,如文本分类、情感分析、机器翻译等,提供了强大的支持。它不仅考虑词在文档中的出现次数,还考虑词在整个语料库中的稀有性。常见词如 “the”、“is” 会被赋予较低的权重,而那些在少数文档中出现的稀有词则会被赋予更高的权重。它将整个文档表示为一个词频向量,其中每个维度对应词汇表中的一个词,向量的值表示该词在文档中出现的次数。它的思想非常简单:为词汇表中的每个单词分配一个唯一的向量,这个向量的长度等于词汇表的大小。原创 2024-08-25 00:12:44 · 940 阅读 · 0 评论