【ShuQiHere】 DBSCAN 聚类算法详解:公式、代码与应用

🧠 【ShuQiHere】 🎓

目录 📜

  1. DBSCAN 简介
  2. DBSCAN 的工作原理
  3. DBSCAN 的算法步骤
  4. DBSCAN 的优缺点
  5. 参数选择
  6. 案例分析:DBSCAN 在地理数据中的应用
  7. 总结

1. DBSCAN 简介 🔍

DBSCANDensity-Based Spatial Clustering of Applications with Noise,基于密度的聚类算法)是一种通过密度来确定簇的无监督学习算法。与 K-means 不同,DBSCAN 不需要事先指定簇的数量,而是根据数据点的密度来自动确定簇的数量。同时,DBSCAN 能识别数据中的噪声点,并且适用于复杂形状的簇。🎯

DBSCAN 在实际应用中非常有用,特别是在处理地理数据、天文数据、以及需要识别噪声点的场景中。它的灵活性使得它在复杂数据集上表现非常出色。


2. DBSCAN 的工作原理 🛠️

DBSCAN 通过密度来定义簇。它通过寻找密度足够高的区域,将这些区域中的点划分为一个簇。如果某个区域的点密度低于设定阈值,则这些点被标记为噪声点。算法依赖于两个关键参数:εminPts

2.1 核心概念 📚:

  1. ε 邻域Epsilon Neighborhood):给定一个数据点 ( p ),其 ε 邻域包含所有距离 ( p ) 小于等于 ε 的点,即满足以下条件的所有点:

N ε ( p ) = { q ∈ D ∣ d ( p , q ) ≤ ε } N_{\varepsilon}(p) = \{q \in D | d(p, q) \leq \varepsilon\} Nε(p)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShuQiHere

啊这,不好吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值