
【ShuQiHere】人工智能导论
文章平均质量分 92
欢迎来到“人工智能导论”专栏,这是一个通向智慧之巅的旅程!⚔️在这里,我们将探索人工智能的秘境,解锁智能算法的无尽潜能。这些笔记源自我在BNU-HKBU联合国际学院(UIC)的修行之路,每一篇文章都记录了我在Dr. Raymond Lee教授指导下对AI的深入探讨与领悟。📚
ShuQiHere
I throw my burden onto the blog, thus....
展开
-
【ShuQiHere】从自监督到人类反馈:一览大语言模型(LLM)训练及其数据集的“前世今生” ☕️
大语言模型(LLM)已在对话、写作、翻译、搜索等领域展现出令人惊艳的“类通用智能”潜质。那么,它们究竟是如何一步步“成长”到如此能说会道、似人非人的地步的呢?本文将带你探秘 LLM 的训练方法和数据构建过程。我们将从历史与背景、技术演化、数据集“真容”、开源资源推荐等方面深度剖析,带你全方位了解大语言模型!原创 2025-01-03 23:59:57 · 292 阅读 · 0 评论 -
【ShuQiHere】 机器学习中的网格搜索(Grid Search)超参数调优
在机器学习中,模型的性能不仅取决于算法的选择,还取决于超参数(Hyperparameters)的设置。超参数是模型在训练之前需要设置的参数,它们控制着学习过程的行为。正确地选择超参数可以显著提升模型的性能。🎯然而,找到最佳的超参数组合并非易事。为了解决这个问题,**网格搜索(Grid Search)**应运而生。它是一种系统地遍历预定义的超参数组合,以找到最佳模型性能的方法。原创 2024-10-18 04:00:00 · 1746 阅读 · 0 评论 -
【ShuQiHere】Logic Programming:探索逻辑编程的奇妙世界
在计算机科学的广阔领域中,**逻辑编程(Logic Programming,LP)**是一颗璀璨的明珠。它提供了一种全新的方式来思考和解决问题,让我们能够以声明性的方式定义问题,而不是以传统的命令式方式编写解决方案。在本文中,我们将深入探讨逻辑编程的概念、基础以及如何在Python中应用它。准备好了吗?让我们开始吧!🚀原创 2024-10-18 03:45:00 · 1124 阅读 · 0 评论 -
【ShuQiHere】距离度量在 KNN 算法中的应用:欧几里得距离与曼哈顿距离
在机器学习和数据挖掘领域,**K 最近邻算法**(K-Nearest Neighbors,简称 **KNN**)是一种简单 yet 强大的非参数监督学习方法。KNN 的核心在于度量**样本之间的距离**,从而确定样本的相似性。距离度量的选择直接影响 KNN 的性能和准确性。在本文中,我们将深入探讨两种常用的距离度量方法:**欧几里得距离**(Euclidean Distance)和**曼哈顿距离**(Manhattan Distance),并探讨它们在 KNN 算法中的应用与区别。💡原创 2024-10-17 01:07:12 · 1190 阅读 · 0 评论 -
【ShuQiHere】 AI与自我意识:能否创造真正的自觉机器人?
经过几十年的探索,人工智能已经在机器学习、自然语言处理等领域取得了显著的进展。尽管机器能够模拟许多复杂的认知任务,但它们距离实现真正的自我意识仍有很长的路要走。随着技术的进步,AI可能在未来实现某种形式的自我意识。如果机器具备了自我意识,我们该如何对待它们?它们是否应享有权利?🤔最后的思考:如果我们能够创造出具有自我意识的机器人,那么我们是否也可能是由某种更高智慧所创造的“自觉机器”呢?原创 2024-10-17 01:30:00 · 1488 阅读 · 0 评论 -
【ShuQiHere】探索高维数据的降维利器:主成分分析(PCA)系统讲解
在数据科学和机器学习中,降维是处理复杂数据集的重要工具。主成分分析(**PCA**,Principal Component Analysis)是最常用的线性降维方法之一,通过减少特征数量,同时保留数据中最有价值的特征,使我们能够高效处理高维数据。PCA不仅可以简化模型,还能帮助我们更好地理解数据。本文将系统性地介绍PCA的基本原理、数学推导、代码实现以及其应用场景,帮助你在实际工作中充分利用这一强大的工具。📊原创 2024-10-16 00:00:00 · 2873 阅读 · 0 评论 -
【ShuQiHere】智慧城市(Smart City)全面指南:AI如何重塑城市生活 ️
智慧城市(Smart City)是指通过先进的**信息和通信技术(ICT, Information and Communication Technologies)**、**物联网(IoT, Internet of Things)**和**人工智能(AI, Artificial Intelligence)**实现资源高效管理和服务优化的城市。这些技术能够智能化地协调城市交通、能源管理、医疗保健等各个领域,提升城市居民的生活质量,同时减少环境影响。原创 2024-10-15 01:23:08 · 2910 阅读 · 0 评论 -
【ShuQiHere】智慧健康:人工智能(AI)在医疗中的应用
随着科技的进步,**人工智能(AI, Artificial Intelligence)**、**物联网(IoT, Internet of Things)**、**大数据(Big Data)**和**5G技术**正在全面改变我们的日常生活。这篇博客将带你深入了解这些技术如何融入现代医疗体系,帮助提高医疗质量,改善患者的生活质量。让我们一同探索“智慧健康”的未来!🚀原创 2024-10-15 01:21:04 · 931 阅读 · 0 评论 -
【ShuQiHere】智能交通的未来:AI与5G技术的完美结合
交通作为社会的核心基础设施,一直以来都在推动文明进步。尤其是随着科技的发展,**人工智能(Artificial Intelligence, AI)**和**5G技术**的崛起为我们描绘了一个全新的交通蓝图。想象一下,未来你不再需要自己驾驶汽车,交通事故大幅减少,甚至整个城市的交通都可以实时优化。🤖🚗交通系统的这一变革不仅仅限于速度提升,还包括**环境友好型**和**资源高效利用**。这篇博客将带你深入了解智能交通系统(**Intelligent Transportation System, ITS*原创 2024-10-14 02:21:58 · 1263 阅读 · 1 评论 -
【ShuQiHere】K近邻算法(KNN)全面解析:从理论到实现
K近邻算法()是一种经典且直观的机器学习算法,广泛用于分类和回归任务。它是懒惰学习算法的一种,意指在训练阶段没有显式的建模过程,而是在预测阶段依据数据之间的距离进行推断。KNN不需要训练模型,它的核心思想是**“相似的样本具有相似的输出”**。📜历史背景:KNN最早在1951年由Evelyn Fix和Joseph Hodges提出。它之所以能在数十年后依然广泛应用,是因为它的简单性、非参数特性以及其良好的表现,特别是在小数据集或低维度任务上非常有效。🔮实际意义。原创 2024-10-13 03:35:58 · 1587 阅读 · 0 评论 -
【ShuQiHere】均值漂移算法详解:原理、实现及应用
在机器学习的世界里,**聚类**(Clustering)是非常重要的任务之一。聚类的目的是将数据按照相似性划分为不同的组群,以便我们更好地理解数据背后的结构。**均值漂移**(Mean Shift)是一种强大且灵活的非参数聚类算法,特别适合那些数据簇数量未知的场景。本文将详细介绍均值漂移算法的原理、实现方法,以及其在实际中的应用场景。🤖📊原创 2024-10-11 00:00:00 · 1773 阅读 · 0 评论 -
【ShuQiHere】 解密诺奖得主:约翰·霍普菲尔德与人工神经网络的革命
约翰·霍普菲尔德和杰弗里·辛顿的工作展示了物理学、计算机科学和生物学的完美融合。他们的研究证明了跨学科合作的重要性,也为人工智能技术的未来发展铺平了道路。从基础理论到实用应用,他们的贡献不仅赢得了诺贝尔奖的认可,更是改变了整个科学和技术领域的面貌。原创 2024-10-10 00:00:00 · 2147 阅读 · 0 评论 -
【ShuQiHere】 DBSCAN 聚类算法详解:公式、代码与应用
**DBSCAN**(*Density-Based Spatial Clustering of Applications with Noise*,基于密度的聚类算法)是一种通过密度来确定簇的无监督学习算法。与 K-means 不同,DBSCAN 不需要事先指定簇的数量,而是根据数据点的密度来自动确定簇的数量。同时,DBSCAN 能识别数据中的噪声点,并且适用于复杂形状的簇。🎯DBSCAN 在实际应用中非常有用,特别是在处理地理数据、天文数据、以及需要识别噪声点的场景中。它的灵活性使得它在复杂数据集上表原创 2024-10-09 03:00:00 · 1230 阅读 · 2 评论 -
【ShuQiHere】 K-means 聚类算法详解:公式、代码与实战
K-means 是一种常见的**无监督学习算法**(*Unsupervised Learning Algorithm*),用于解决**聚类**(*Clustering*)问题。该算法的目标是将数据集中的 \(n\) 个数据点分成 \(K\) 个簇(*Clusters*),使得同一簇内的数据点之间尽可能相似,而不同簇的数据点尽可能不同。🧑🏫K-means 在市场细分、图像压缩、模式识别等领域得到了广泛应用。其因简单高效而受欢迎,但要充分利用它,理解其工作原理至关重要。原创 2024-10-09 03:00:00 · 4046 阅读 · 0 评论 -
【ShuQiHere】 智能代理与软件机器人:引领自动化未来的技术
**智能代理(Intelligent Agents, IAs)** 是一种能够自主执行任务的系统,能够感知环境并根据其感知采取行动以达到目标。它们具备自主性、学习能力和适应性,广泛应用于自动驾驶、智能家居、金融交易等领域。智能代理可以感知环境并根据其“知识库”做出决策,执行一系列自动化任务。原创 2024-10-08 02:17:09 · 1611 阅读 · 0 评论 -
【ShuQiHere】 重新定义搜索:本体搜索引擎的时代
**本体搜索引擎(Ontological Search Engine, OSE)** 是一种基于语义理解和本体结构的智能搜索工具。与传统的关键词搜索不同,本体搜索引擎能够理解搜索背后的深层语义,提供更精准、更符合用户意图的搜索结果。通过对知识进行结构化表示,本体搜索引擎可以在更高的语义层次上进行信息检索,突破了传统搜索的诸多局限。原创 2024-10-08 02:15:33 · 1383 阅读 · 0 评论 -
【ShuQiHere】 探索自然语言处理的世界:从基础到应用
自然语言处理(Natural Language Processing, NLP)是人工智能(Artificial Intelligence, AI)的一个分支,旨在使计算机能够理解、分析、生成并处理人类自然语言。换句话说,NLP的目标是使计算机“学会”像人类一样处理语言。自然语言的复杂性,包括语法、语义、上下文和模糊性,给计算机处理语言带来了巨大挑战。NLP技术在日常生活中的许多场景中得到了广泛应用,如语音助手、自动翻译和智能问答等。背景扩展:自然语言处理作为一门学科,其根源可以追溯到1950年代。原创 2024-09-25 00:00:00 · 1274 阅读 · 0 评论 -
【ShuQiHere】Scikit-Learn实战:六大经典机器学习模型的代码实现,看这一篇就够了
本文介绍了Scikit-Learn中的经典机器学习模型,包括线性回归逻辑回归决策树随机森林支持向量机K近邻和梯度提升。每种模型都有其独特的特点和适用场景,选择合适的模型能够显著提高预测准确性。通过具体的代码示例与深入的解析,我们希望你对这些模型有了更全面的理解,能够在实际项目中灵活运用。未来,随着数据和技术的不断发展,机器学习的应用场景将更加广泛,期待你在这一领域的探索和实践!🌈如果你对某个模型有更深入的兴趣,或者有任何问题,欢迎留言讨论,我们共同学习进步!😊。原创 2024-09-23 02:00:00 · 1546 阅读 · 0 评论 -
【ShuQiHere】 探索计算机视觉的世界:从基础到应用
计算机视觉是人工智能的一个重要分支,旨在让计算机理解和解释视觉信息。通过摄像头或传感器捕获的图像和视频数据,计算机可以执行诸如物体识别、场景重建、运动估计等任务。背景:计算机视觉的发展与**人工智能(Artificial Intelligence, AI)以及机器学习(Machine Learning)**息息相关。早在20世纪50年代,科学家们就开始尝试让计算机模拟人类的视觉感知能力。随着计算能力的提升和算法的改进,计算机视觉技术在近几十年取得了突飞猛进的发展。原创 2024-09-21 03:00:00 · 1361 阅读 · 0 评论 -
【ShuQiHere】 探索数据挖掘的世界:从概念到应用
**数据挖掘(Data Mining, DM)** 是一种从大型数据集中提取有用信息的技术,无论是在商业分析、金融预测,还是医学研究中,数据挖掘都扮演着至关重要的角色。本文将带您深入了解数据挖掘的核心概念、经典方法,以及它在日常生活和商业中的应用场景。原创 2024-09-20 00:09:16 · 1555 阅读 · 0 评论 -
【ShuQiHere】探索人工智能核心:机器学习的奥秘
机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中**学习**,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活地解决问题。原创 2024-09-12 00:12:51 · 1141 阅读 · 0 评论 -
【ShuQiHere】“初识人工智能:智能机器的基础入门”
**人工智能(Artificial Intelligence, AI)** 是计算机科学的一个分支,目标是让计算机或机器具备像人类一样的智能。自计算机发明以来,计算机执行各种任务的能力呈指数增长。随着计算机系统在不同领域的多样化发展、速度的提升和体积的缩小,人类开始思考:**“机器能像人类一样思考和行动吗?”原创 2024-09-05 00:15:00 · 1006 阅读 · 0 评论 -
【ShuQiHere】从神话到科学:人类智能的探索之旅
本博客以希腊神话中的普罗米修斯故事为引子,深入探讨了人类智能的起源与发展,涵盖了哲学、心理学、认知科学和神经科学等多个领域的视角。通过对智能的定义、学习能力的数学模型及相关代码示例的展示,本文为读者提供了一个全面而系统的框架,来理解和探索智能的本质。此外,文章还结合了现代人工智能的发展,探讨了古代智慧与现代科技的联系,并总结了当前对人类智能的多维度研究。这些内容基于我在BNU-HKBU联合国际学院(UIC)学习的《Introduction to Artificial Intelligence》课程所学知识。原创 2024-09-03 00:15:00 · 1206 阅读 · 0 评论