Kriging模型

Kriging回归

given set s = [ s 1 , s 2 , … , s m ] T \mathbf{s}=[s_1,s_2,\ldots,s_m]^T s=[s1,s2,,sm]T, corresponding response g = [ g 1 , g 2 , … , g m ] T \mathbf{g}=[g_1,g_2,\ldots,g_m]^T g=[g1,g2,,gm]T,

predictor:
g ^ ( t ) = f T ( t ) β + Z ( t ) \hat{g}(t)=f^T(t)\beta+Z(t) g^(t)=fT(t)β+Z(t)
f ( t ) f(t) f(t) is a regression function, the stochastic process Z ( t ) Z(t) Z(t) is assumed to have zero mean and covariance is :
E [ Z ( W ) Z ( Q ) ] = σ 2 R ( θ ; W , Q ) E[Z(\mathbf{W})Z(\mathbf{Q})]=\sigma^2R(\theta;\mathbf{W},\mathbf{Q}) E[Z(W)Z(Q)]=σ2R(θ;W,Q)
R R R is the correlation function defined by parameter θ \theta θ, the most widely used is gaussian correalaton function:
R ( θ ; W , Q ) = ∏ j = 1 n [ − θ ( Q j − W i ) 2 ] R(\theta;\mathbf{W},\mathbf{Q})=\prod_{j=1}^n\left[-\theta(Q_j-W_i)^2\right] R(θ;W,Q)=j=1n[θ(QjWi)2]
the response G ( u ) G(u) G(u) of a given test point u \mathbf{u} u obey a gaussian distribution, denote as
G ( u ) ∼ N ( μ G ( u ) , σ G 2 ( u ) ) G(\mathbf{u})\sim N\left(\mu_G(\mathbf{u}),\sigma_G^2(\mathbf{u})\right) G(u)N(μG(u),σG2(u))
the mean and standard devision given as :
μ G ( u ) = f ( u ) T β ∗ + r ( u ) T R − 1 ( g − F β ∗ ) \mu_G(\mathbf{u})=f(\mathbf{u})^T\beta^*+r(\mathbf{u})^T\mathbf{R}^{-1}(\mathbf{g}-\mathbf{F}\beta^*) μG(u)=f(u)Tβ+r(u)TR1(gFβ)

σ G 2 ( u ) = σ 2 [ 1 + v T ( F T R T F ) − 1 v − r ( u ) T R − 1 r ( u ) ] \sigma_G^2(\mathbf{u})=\sigma^2\left[1+\mathbf{v}^T(\mathbf{F}^T\mathbf{R}^T\mathbf{F})^{-1}\mathbf{v}-r(\mathbf{u})^T\mathbf{R}^{-1}r(\mathbf{u})\right] σG2(u)=σ2[1+vT(FTRTF)1vr(u)TR1r(u)]

where
v = F T R − 1 r ( u ) − f ( u ) \mathbf{v}=\mathbf{F}^T\mathbf{R}^{-1}r(\mathbf{u})-f(\mathbf{u}) v=FTR1r(u)f(u)

σ 2 = 1 m ( Y − F β ∗ ) T R − 1 ( g − F β ∗ ) \sigma^2=\frac{1}{m}(\mathbf{Y}-\mathbf{F}\beta^*)^T\mathbf{R}^{-1}(\mathbf{g}-\mathbf{F}\beta^*) σ2=m1(YFβ)TR1(gFβ)

β ∗ = ( F T R − 1 F ) − 1 F T R − 1 g \beta^*=(\mathbf{F}^T\mathbf{R}^{-1}\mathbf{F})^{-1}\mathbf{F}^T\mathbf{R}^{-1}\mathbf{g} β=(FTR1F)1FTR1g

r ( u ) r(\mathbf{u}) r(u) is correlation vector between S \mathbf{S} S and u \mathbf{u} u
r ( u ) = [ R ( θ ; s 1 , u ) , … , R ( θ ; s m , u ) ] T r(\mathbf{u})=[R(\theta;s_1,\mathbf{u}),\ldots,R(\theta;s_m,\mathbf{u})]^T r(u)=[R(θ;s1,u),,R(θ;sm,u)]T
F F F is the regression matrix
F = [ f ( s 1 ) , … , f ( s m ) ] T F=[f(s_1),\ldots,f(s_m)]^T F=[f(s1),,f(sm)]T
the optimal coefficients θ ∗ \theta^* θ of the correlation function solves
θ ∗ = min ⁡ θ { ∣ R ∣ 1 m σ 2 } \theta^*=\min_{\theta}\{|\mathbf{R}|^{\frac{1}{m}}\sigma^2\} θ=θmin{Rm1σ2}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值