分层Kriging模型理论相关推导

分层Kriging(Hierarchical Kriging, HK)模型是一种简单实用的变可信度代理模型,分两层或多层建立代理模型,本文以两层模型为例对分层代理模型理论进行推导。

3.1 代理模型问题的基本描述

对于一个有 m m m个设计变量的优化问题,在设计空间中同时进行高可信度分析和低可信度抽样,以建立所谓变可信度模型,变可信代理模型在达到相同近似精度的条件下,可以显著提高建立代理模型的效率。设高、低可信度分析程序的抽样位置分别为:
{ S 1 = [ x 1 ( 1 )    x 1 ( 2 )    …    x 1 ( n 1 ) ] T ∈ R n 1 × m S 2 = [ x 2 ( 1 )    x 2 ( 2 )    …    x 2 ( n 2 ) ] T ∈ R n 2 × m (1) \begin {cases} \mathbf S_1=[\mathbf x_1^{(1)} \ \ \mathbf x_1^{(2)} \ \ \ldots \ \ \mathbf x_1^{(n_1)}]^T\in\R^{n_1\times m} \\ \mathbf S_2=[\mathbf x_2^{(1)} \ \ \mathbf x_2^{(2)} \ \ \ldots \ \ \mathbf x_2^{(n_2)}]^T\in \R^{n_2 \times m} \end {cases} \tag{1} {S1=[x1(1)  x1(2)    x1(n1)]TRn1×mS2=[x2(1)  x2(2)    x2(n2)]TRn2×m(1)
上式中,下标 “1” 和 “2” 分别代表高、低可信度,例如 n 1 n_1 n1 n 2 n_2 n2 分别代表高、低可信度样本点数(可合理假设 n 2 ≫ n 1 n_2\gg n_1 n2n1 )。相应的目标函数或约束函数响应值为:
{ y 1 = [ y 1 ( 1 )    y 1 ( 2 )    …    y 1 ( n 1 ) ] T ∈ R n 1 y 2 = [ y 2 ( 1 )    y 2 ( 2 )    …    y 2 ( n 2 ) ] T ∈ R n 2 (2) \begin {cases} \mathbf y_1=[y_1^{(1)} \ \ y_1^{(2)} \ \ \ldots \ \ y_1^{(n_1)}]^T\in\R^{n_1} \\ \mathbf y_2=[y_2^{(1)} \ \ y_2^{(2)} \ \ \ldots \ \ y_2^{(n_2)}]^T\in\R^{n_2} \end {cases} \tag{2} {y1=[y1(1)  y1(2)    y1(n1)]TRn1y2=[y2(1)  y2(2)    y2(n2)]TRn2(2)
分层代理模型首先在低可信度样本数据 ( S 2 , y 2 ) (\mathbf S_2,y_2) (S2,y2) 的基础上建立 Kriging 模型 y ^ 2 \hat y_2 y^2 ,然后以 y ^ 2 \hat y_2 y^2 为全局趋势模型,在高可信度样本数据集 ( S 1 , y 1 ) (\mathbf S_1,y_1) (S1,y1) 基础上建立所需的代理模型 y ^ 1 \hat y_1 y^1

3.2 HK 模型及其预估值

3.2.1 首先针对低可信度样本点建立Kriging代理模型

首先基于低可信度数据来建立低可信度代理模型以辅助预测,针对低可信度模型假设高斯静态随机过程:
Y l f ( x ) = β 0 , l f + Z l f ( x ) (3) Y_{lf}(\mathbf x)=\beta_{0,lf}+Z_{lf}(\mathbf x) \tag{3} Ylf(x)=β0,lf+Zlf(x)(3)
参照 Kriging 模型建立过程,可得低可信度模型表达式:
y ^ l f ( x ) = β 0 , l f + r l f T ( x ) R l f − 1 ( y s , l f − β 0 , l f F 1 ) (4) \hat y_{lf}(\mathbf x)=\beta_{0,lf}+\mathbf r_{lf}^T(\mathbf x)\mathbf R_{lf}^{-1}(\mathbf y_{s,lf}-\beta_{0,lf}\mathbf F_1) \tag{4} y^lf(x)=β0,lf+rlfT(x)Rlf1(ys,lfβ0,lfF1)(4)
上式中, β 0 , l f = ( F 1 T R l f − 1 F 1 ) − 1 F 1 T R l f − 1 y s , l f \beta_{0,lf}=(\mathbf F_1^T\mathbf R_{lf}^{-1}\mathbf F_1)^{-1}\mathbf F_1^T\mathbf R_{lf}^{-1}\mathbf y_{s,lf} β0,lf=(F1TRlf1F1)1F1TRlf1ys,lf R l f ∈ R n l f × n l f \mathbf R_{lf}\in\R^{n_{lf}\times n_{lf}} RlfRnlf×nlf 是现有的低可信度样本点组成的相关矩阵; F 1 \mathbf F_1 F1 是全为1的列向量; r l f ∈ R n l f \mathbf r_{lf}\in \R^{n_{lf}} rlfRnlf 是任意点 x \mathbf x x 与已知样本点间的相关矢量。

3.2.2 建立分层代理模型

不同于Cokriging 模型,将低可信度数据建立的代理模型作为趋势项,将高可信度函数视为下述高斯静态随机过程的具体实现:
Y ( x ) = β 0 y ^ l f ( x ) + Z ( x ) (5) Y(\mathbf x)=\beta_0 \hat y_{lf}(\mathbf x)+Z(\mathbf x) \tag {5} Y(x)=β0y^lf(x)+Z(x)(5)
y ^ l f ( x ) \hat y_{lf}(\mathbf x) y^lf(x) 乘以缩放系数 β 0 \beta_0 β0 作为全局趋势模型, Z ( x ) Z(\mathbf x) Z(x) 是均值为零、方差为 σ 2 \sigma ^2 σ2 的静态随机过程。在设计空间不同位置处,这些随机变量存在一定的相关性(协方差),表示为:
C o v [ Z ( x ) , Z ( x ′ ) ] = σ 2 R ( x , x ′ ) (6) Cov[Z(\mathbf x),Z(\mathbf x')]=\sigma^2R(\mathbf x, \mathbf x') \tag{6} Cov[Z(x),Z(x)]=σ2R(x,x)(6)
上式中, R ( x , x ′ ) R(\mathbf x,\mathbf x') R(x,x) 是相关函数,它是 x \mathbf x x x ′ \mathbf x' x 间欧几里德距离的函数,将高可信度函数视为已知高可信度样本点的线性加权,即:
y ^ ( x ) = ω T y s (7) \hat y(\mathbf x)=\boldsymbol \omega^T\mathbf y_s \tag{7} y^(x)=ωTys(7)
上式中, ω = [ ω ( 1 ) ω ( 2 ) … ω ( n ) ] T \boldsymbol \omega=\begin {bmatrix} \omega^{(1)} & \omega^{(2)} & \ldots \omega^{(n)} \end {bmatrix}^T ω=[ω(1)ω(2)ω(n)]T 是高可信度样本点的加权系数向量,用 Y s = [ Y ( 1 ) Y ( 2 ) … Y ( n 1 ) ] \mathbf Y_s=\begin {bmatrix} Y^{(1)} & Y^{(2)} & \ldots & Y^{(n_1)} \end {bmatrix} Ys=[Y(1)Y(2)Y(n1)] 代替 y s = [ y ( 1 ) y ( 2 ) … y ( n ) ] \mathbf y_s=\begin {bmatrix}y^{(1)} & y^{(2)} &\ldots & y^{(n)} \end {bmatrix} ys=[y(1)y(2)y(n)] 。寻找最优加权系数 ω \boldsymbol \omega ω 使得均方差最小:
M S E [ y ^ ( x ) ] = E [ ( ω T Y s − Y ( x ) ) 2 ] (8) MSE[\hat y(\mathbf x)]=E[(\boldsymbol \omega^T\mathbf Y_s-Y(\mathbf x))^2] \tag{8} MSE[y^(x)]=E[(ωTYsY(x))2](8)
并满足无偏约束:
E [ ω T Y s ] = E [ Y ( x ) ] (9) E[\boldsymbol \omega^T \mathbf Y_s]=E[Y(\mathbf x)] \tag{9} E[ωTYs]=E[Y(x)](9)
对上式化简得:

以下推导过程要注意,应将 y ^ l f ( x ) \hat y_{lf}(\mathbf x) y^lf(x) 视为由低可信度代理模型得出的值,代入到高可信度模型后则应视为常值(此常值在设计空间不同点处的值不同)

∑ i = 1 n 1 ω ( i ) y ^ l f ( x 1 ( i ) ) = y ^ l f ( x ) (10) \sum_{i=1}^{n_1}\omega^{(i)}\hat y_{lf}(\mathbf x_1^{(i)}) =\hat y_{lf}(\mathbf x) \tag{10} i=1n1ω(i)y^lf(x1(i))=y^lf(x)(10)

采用拉格朗日乘数法,令:
L ( ω , μ ) = E [ ( ω T Y s − Y ( x ) ) 2 ] + μ ( ∑ ω ( i ) y ^ l f ( x 1 ( i ) ) − y ^ l f ( x ) ) (11) L(\boldsymbol \omega, \mu)=E[(\boldsymbol \omega^T\mathbf Y_s-Y(\mathbf x))^2] + \mu(\sum \omega^{(i)}\hat y_{lf}(\mathbf x_1^{(i)})-\hat y_{lf}(\mathbf x) ) \tag {11} L(ω,μ)=E[(ωTYsY(x))2]+μ(ω(i)y^lf(x1(i))y^lf(x))(11)
令:
∂ L ( ω , μ ) ∂ ω ( i ) = 2 E [ ( ω T Y s − Y ( x ) ) Y s ( x 1 ( i ) ) ] + μ y ^ l f ( x 1 ( i ) ) = 2 { ∑ j = 1 n 1 ω ( j ) [ β 0 2 y ^ l f ( x 1 ( i ) ) y ^ l f ( x 1 ( j ) ) + σ 2 R ( x 1 ( i ) , x 1 ( j ) ) ] − [ β 0 2 y ^ l f ( x ) y ^ l f ( x 1 ( i ) ) } + σ 2 R ( x 1 ( i ) , x ) ] + μ y ^ l f ( x 1 ( i ) ) = 2 σ 2 ∑ j = 1 n 1 ω ( j ) R ( x 1 ( i ) , x 1 ( j ) ) − 2 σ 2 R ( x 1 ( i ) , x ) + μ y ^ l f ( x 1 ( i ) ) = 0 (12) \begin {align} \frac {\partial L(\boldsymbol \omega,\mu)}{\partial \omega^{(i)}} &= 2E[(\boldsymbol \omega^T\mathbf Y_s-Y(\mathbf x))Y_s(\mathbf x_1^{(i)})] +\mu\hat y_{lf}(\mathbf x_1^{(i)}) \\ &= 2\{\sum_{j=1}^{n_1}\omega^{(j)}[\beta_0^2\hat y_{lf}(\mathbf x_1^{(i)})\hat y_{lf}(\mathbf x_1^{(j)})+\sigma^2R(\mathbf x_1^{(i)},\mathbf x_1^{(j)})]-[\beta_0^2\hat y_{lf}(\mathbf x)\hat y_{lf}(\mathbf x_1^{(i)})\}+\sigma^2R(\mathbf x_1^{(i)},\mathbf x)]+\mu \hat y_{lf}(\mathbf x_1^{(i)}) \\ &= 2\sigma^2\sum_{j=1}^{n_1}\omega^{(j)}R(\mathbf x_1^{(i)},\mathbf x_1^{(j)})-2\sigma^2R(\mathbf x_1^{(i)},\mathbf x)+\mu\hat y_{lf}(\mathbf x_1^{(i)}) \\ &=0 \end {align} \tag{12} ω(i)L(ω,μ)=2E[(ωTYsY(x))Ys(x1(i))]+μy^lf(x1(i))=2{j=1n1ω(j)[β02y^lf(x1(i))y^lf(x1(j))+σ2R(x1(i),x1(j))][β02y^lf(x)y^lf(x1(i))}+σ2R(x1(i),x)]+μy^lf(x1(i))=2σ2j=1n1ω(j)R(x1(i),x1(j))2σ2R(x1(i),x)+μy^lf(x1(i))=0(12)
则:
{ ∑ j = 1 n 1 ω ( j ) R ( x 1 ( i ) , x 1 ( j ) ) + μ y ^ l f ( x 1 ( i ) ) 2 σ 2 = R ( x 1 ( i ) , x ) ∑ i = 1 n 1 ω ( i ) y ^ l f ( x 1 ( i ) ) = y ^ l f ( x ) (13) \begin {cases} \sum_{j=1}^{n_1}\omega^{(j)}R(\mathbf x_1^{(i)},\mathbf x_1^{(j)}) + \frac {\mu \hat y_{lf}(\mathbf x_1^{(i)})}{2\sigma^2}=R(\mathbf x_1^{(i)},\mathbf x) \\ \sum_{i=1}^{n_1}\omega^{(i)}\hat y_{lf}(\mathbf x_1^{(i)})=\hat y_{lf}(\mathbf x) \end {cases} \tag{13} {j=1n1ω(j)R(x1(i),x1(j))+2σ2μy^lf(x1(i))=R(x1(i),x)i=1n1ω(i)y^lf(x1(i))=y^lf(x)(13)
写成矩阵形式为:
[ R F F T 0 ] [ ω μ ^ ] = [ r y ^ l f ( x ) ] (14) \begin {bmatrix}\mathbf R & \mathbf F \\ \mathbf F^T & 0\end {bmatrix}\begin {bmatrix} \boldsymbol \omega \\ \hat \mu \end {bmatrix} =\begin {bmatrix} \mathbf r \\ \hat y_{lf}(\mathbf x) \end {bmatrix} \tag{14} [RFTF0][ωμ^]=[ry^lf(x)](14)
上式中:
F = [ y ^ l f ( x 1 ( 1 ) ) , … , y ^ l f ( x 1 ( n 1 ) ) ] T ,      μ ^ = μ / ( 2 σ 2 ) R = ( R ( x 1 ( i ) , x 1 ( j ) ) ) i , j ∈ R n 1 × n 1 ,      r = ( R ( x 1 ( i ) , x ) ) i ∈ R n 1 (15) \begin {align} & \mathbf F=[\hat y_{lf}(\mathbf x_1^{(1)}),\ldots,\hat y_{lf}(\mathbf x_1^{(n_1)})]^T, \ \ \ \ \hat \mu=\mu /(2\sigma^2) \\ & \mathbf R =(R(\mathbf x_1^{(i)},\mathbf x_1^{(j)}))_{i,j}\in \R^{n_1 \times n_1}, \ \ \ \ \mathbf r=(R(\mathbf x_1^{(i)},\mathbf x))_i \in \R^{n_1} \end {align} \tag {15} F=[y^lf(x1(1)),,y^lf(x1(n1))]T,    μ^=μ/(2σ2)R=(R(x1(i),x1(j)))i,jRn1×n1,    r=(R(x1(i),x))iRn1(15)
则:
[ ω T μ ^ ] = ( [ R F F T 0 ] − 1 [ r y ^ l f ( x ) ] ) T = [ r y ^ l f ( x ) ] T [ R F F T 0 ] − 1 (16) \begin {bmatrix} \boldsymbol \omega^T & \hat \mu \end {bmatrix}= \left(\begin {bmatrix} \mathbf R & \mathbf F \\ \mathbf F^T & 0 \end {bmatrix}^{-1} \begin {bmatrix} \mathbf r \\ \hat y_{lf}(\mathbf x) \end {bmatrix} \right)^T=\begin {bmatrix} \mathbf r \\ \hat y_{lf}(\mathbf x) \end {bmatrix}^T \begin {bmatrix} \mathbf R & \mathbf F \\ \mathbf F^T & 0 \end {bmatrix}^{-1} \tag{16} [ωTμ^]=([RFTF0]1[ry^lf(x)])T=[ry^lf(x)]T[RFTF0]1(16)
则设计空间任意未知点 x \mathbf x x 处预测的响应值为:
y ^ ( x ) = [ ω T μ ^ ] [ y s 0 ] = [ r y ^ l f ( x ) ] T [ R F F T 0 ] − 1 [ y s 0 ] (17) \hat y(\mathbf x) =\begin {bmatrix} \boldsymbol \omega^T & \hat \mu \end {bmatrix} \begin {bmatrix} \mathbf y_s \\ 0 \end {bmatrix} =\begin {bmatrix} \mathbf r \\ \hat y_{lf}(\mathbf x) \end {bmatrix}^T \begin {bmatrix}\mathbf R & \mathbf F \\ \mathbf F^T & 0 \end {bmatrix}^{-1}\begin {bmatrix} \mathbf y_s \\ 0 \end {bmatrix} \tag {17} y^(x)=[ωTμ^][ys0]=[ry^lf(x)]T[RFTF0]1[ys0](17)

由分块矩阵求逆公式,有:
[ R F F T 0 ] − 1 = [ R − 1 − R − 1 F ( F T R − 1 F ) − 1 F T R − 1 R − 1 F ( F T R − 1 F ) − 1 ( F T R − 1 F ) − 1 F T R − 1 − ( F T R − 1 F ) − 1 ] (18) \begin {bmatrix} \mathbf R & \mathbf F \\ \mathbf F ^T & 0\end {bmatrix} ^{-1} = \begin{bmatrix} \mathbf R^{-1}-\mathbf R^{-1}\mathbf F(\mathbf F^T \mathbf R^{-1}\mathbf F)^{-1}\mathbf F^{T}\mathbf R^{-1} & \mathbf R^{-1} \mathbf F(\mathbf F^T \mathbf R^{-1} \mathbf F)^{-1} \\ (\mathbf F^T \mathbf R^{-1} \mathbf F)^{-1}\mathbf F^T\mathbf R^{-1} & -(\mathbf F^T\mathbf R^{-1} \mathbf F)^{-1}\end {bmatrix} \tag{18} [RFTF0]1=[R1R1F(FTR1F)1FTR1(FTR1F)1FTR1R1F(FTR1F)1(FTR1F)1](18)
将上式代入式 (16) 并化简得:
y ^ ( x ) = [ r T R − 1 − r T R − 1 F ( F T R − 1 F ) − 1 F T R − 1 + y ^ l f ( x ) ( F T R − 1 F ) − 1 F T R − 1 ] y s = β 0 y ^ l f ( x ) + r T ( x ) R − 1 ( y s − β 0 F ) (19) \begin {align} \hat y(\mathbf x) &= [\mathbf r^T\mathbf R^{-1} - \mathbf r^T \mathbf R ^{-1}\mathbf F(\mathbf F^T\mathbf R^{-1}\mathbf F)^{-1}\mathbf F^T\mathbf R^{-1} +\hat y_{lf}(\mathbf x)(\mathbf F^T\mathbf R^{-1}\mathbf F)^{-1}\mathbf F^T \mathbf R^{-1}]\mathbf y_s \\ &=\beta_0\hat y_{lf}(\mathbf x)+\mathbf r^T(\mathbf x)\mathbf R^{-1}(\mathbf y_s -\beta_0\mathbf F) \end {align} \tag{19} y^(x)=[rTR1rTR1F(FTR1F)1FTR1+y^lf(x)(FTR1F)1FTR1]ys=β0y^lf(x)+rT(x)R1(ysβ0F)(19)
上式中: β 0 = ( F T R − 1 F ) − 1 F T R − 1 y s \beta_0=(\mathbf F^T\mathbf R^{-1}\mathbf F)^{-1}\mathbf F^T\mathbf R^{-1}\mathbf y_s β0=(FTR1F)1FTR1ys 是放缩系数, V H K = R − 1 ( y s − β 0 F ) V_{HK}=\mathbf R^{-1}(\mathbf y_s-\beta_0\mathbf F) VHK=R1(ysβ0F) 只与已知样本点数据有关,可以在模型训练结束后一次性计算并存储。之后,预测任意 x \mathbf x x 处的响应值只需要计算 r ( x ) \mathbf r(\mathbf x) r(x) V H K \mathbf V_{HK} VHK 间的点乘。

分层Kriging模型给出的预估值的均方差为:

M S E [ y ^ ( x ) ] = E [ ( ω T Y s − Y ( x ) ) 2 ] = E [ ( ω T Y s − Y ( x ) ) ( ω T Y s − Y ( x ) ) ] = σ 2 ( ω T R ω − 2 ω T r + 1 ) = σ 2 [ ω T ( R ω + F μ ^ ) − ω T F μ ^ − 2 ω T r + 1 ] = σ 2 [ ω T r − ω T F μ ^ − 2 ω T r + 1 ] = σ 2 [ 1 − ω T r − ω T F μ ^ ] = σ 2 [ 1 − [ ω T    μ ^ ] [ r y l f ( x ) ] ] = σ 2 [ 1 − [ r y l f ( x ) ] T [ R F F T 0 ] − 1 [ r y l f ( x ) ] ] = σ 2 { 1.0 − r T R − 1 r + [ r T R − 1 F − y ^ l f ( x ) ] ( F T R − 1 F ) − 1 [ r T R − 1 F − y ^ l f ( x ) ] T } (20) \begin {align} MSE[\hat y(\mathbf x)] & =E[(\boldsymbol \omega ^T\mathbf Y_s-\mathbf Y(\mathbf x))^2]\\ & =E[(\boldsymbol \omega ^T\mathbf Y_s-\mathbf Y(\mathbf x))(\boldsymbol \omega ^T\mathbf Y_s-\mathbf Y(\mathbf x))]\\ & = \sigma ^2(\boldsymbol \omega^T\mathbf R \boldsymbol \omega - 2\boldsymbol \omega^T\mathbf r + 1) \\ & =\sigma^2[\boldsymbol \omega^T(\mathbf R\boldsymbol \omega+\mathbf F\hat \mu)-\boldsymbol \omega^T\mathbf F\hat \mu - 2\boldsymbol \omega^T\mathbf r + 1] \\ & = \sigma ^2[\boldsymbol \omega^T\mathbf r-\boldsymbol \omega^T\mathbf F\hat\mu-2\boldsymbol \omega^T\mathbf r + 1] \\ & =\sigma ^2[1-\boldsymbol \omega^T \mathbf r-\boldsymbol \omega^T \mathbf F\hat\mu] \\ &=\sigma ^2[1-[\boldsymbol \omega ^T \ \ \hat \mu]\begin {bmatrix}\mathbf r \\ \boldsymbol y_{lf}(\mathbf x) \end {bmatrix}]\\&= \sigma ^2[1-\begin {bmatrix} \mathbf r \\ y_{lf}(\mathbf x)\end {bmatrix}^T\begin{bmatrix} \mathbf R &\mathbf F \\ \mathbf F^T & 0 \end {bmatrix}^{-1}\begin {bmatrix}\mathbf r \\ \boldsymbol y_{lf}(\mathbf x) \end {bmatrix}] \\ &=\sigma^2 \{ 1.0-\mathbf r^T\mathbf R^{-1}\mathbf r+[\mathbf r^T\mathbf R^{-1}\mathbf F-\hat y_{lf}(\mathbf x)](\mathbf F^T\mathbf R^{-1}\mathbf F)^{-1}[\mathbf r^T\mathbf R^{-1}\mathbf F-\hat y_{lf}(\mathbf x)]^T \} \end {align} \tag {20} MSE[y^(x)]=E[(ωTYsY(x))2]=E[(ωTYsY(x))(ωTYsY(x))]=σ2(ωTRω2ωTr+1)=σ2[ωT(Rω+Fμ^)ωTFμ^2ωTr+1]=σ2[ωTrωTFμ^2ωTr+1]=σ2[1ωTrωTFμ^]=σ2[1[ωT  μ^][rylf(x)]]=σ2[1[rylf(x)]T[RFTF0]1[rylf(x)]]=σ2{1.0rTR1r+[rTR1Fy^lf(x)](FTR1F)1[rTR1Fy^lf(x)]T}(20)

分层Kriging 模型的相关函数,模型训练过程与Kriging模型十分相似,可以参考之前的博客文章(链接: link),在此不再赘述。

参考文献

[1] HAN Z H , Görtz S. Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling[J]. AIAA Journal, 2012, 50(9):1885-1896.

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: Kriging模型是一种地理信息分析方法,它通过插值来估计一个未知点的数值。它是依据一定空间距离下各点之间相关性的变化,来推断未知点的数值。在Kringing模型中,空间相关性也是通过一组参数来表示的。这些参数是通过一个半方差函数来确定的。半方差函数的值反映了数据间的相关性。Kringing模型将半方差函数的值用最优化的方式拟合,以获得最佳空间相关模型Kriging模型的建立分为三步骤:数据采集、空间相关性分析、Kriging模型构建。数据采集包括数据的收集、处理和分析。空间相关性分析是确定半方差函数的关键。不同的半方差函数适合不同的空间数据,因此选择合适的半方差函数非常重要。Kriging模型可以应用于各种各样的地理信息分析和预测问题,如土壤污染、降雨量和污染物浓度的分布。Kringing模型很常见于GIS领域,它可以建立精确的空间数据模型,为决策提供科学依据和数据支持。 在CSND的应用,Kriging模型可以通过Python语言和R语言进行实现,使用地理信息系统软件结合Kriging模型可以对空间数据进行可视化处理。Kriging模型可以与机器学习算法结合使用,来实现更加复杂和优化的空间数据分析。因为Kriging模型是一种插值方法,因此它也具有一定的局限性。它在缺乏数据的区域的准确性会比较差,因此在使用时需要对原始数据的质量进行严格的评估和筛选,以确保插值结果的准确性。 ### 回答2: Kriging模型是一种利用随机场理论进行空间预测的方法,是地质勘查、矿产资源评价等领域的常用预测方法之一。Kriging模型的基本思路是,通过对一定区域内现有的样本点数据进行空间插值,得到该区域未知位置处的数值预测。Kriging模型是一种广义的最小二乘法,具有高精度、高鲁棒性等优点,因此在地球科学等领域广受欢迎。 在使用Kriging模型进行空间预测时,首先需要对插值变量的相关性进行建模,并计算其半方差函数;然后根据半方差函数对未知值进行估计。Kriging模型最常用的方法是普通克里金方法(OK),该方法基于点插值,通过建立数学模型对未知位置进行预测,常用于二维空间插值。此外,也有一些改进的Kriging模型,如块克里金方法、畸变克里金方法等,用于处理复杂地质结构和不规则数据网格的插值问题。 总之,Kriging模型是一种高效、准确的空间预测方法,可以广泛应用于地球科学、环境科学等领域,并在实际中取得了广泛的成功应用。对于有关此类问题的学者和工程师来说,熟练掌握Kriging模型的原理和应用是非常必要的。 ### 回答3: Kriging模型是一种用于插值和预测未知值的方法,也被称为“空间插值”或“地统计学”。该模型使用局部变异性分析来估计未观测到的点的值,并且给出了一个可信度区间。在地质、环境科学、气象学、农业和资源管理等领域,该模型被广泛应用。Kriging模型的结果可用于制作地图和可视化,以帮助研究人员更好地理解地球表面的变化和趋势。 在使用Kriging模型时,首先需要搜集一些点的值,这些点被称为已知点。然后,通过这些已知点的值的变化情况,推算出未知点的值和误差值。Kriging模型采用一种称为半方差函数的方法来计算这些误差值。半方差函数描述了一个点和其他点之间距离和值之间的关系。Kriging模型根据使用的半方差函数类型和已知点的数量来计算误差估计值。 当使用Kriging模型时,需要考虑纵向和横向的变异性,以及是否存在趋势。因此,不同类型的Kriging模型适用于不同的地理数据类型。例如,普通Kriging适用于数据点之间存在确定趋势的情况,而指示Kriging则适用于没有趋势的数据。 总的来说,Kriging模型是一种有效的工具,可以预测未知点的值和误差范围,并帮助人们更好地理解地球表面的变化趋势。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值