标注:本博客是参考论文有《传统情感分类方法与机遇深度学习的情感分类方法对比分析》、《自然语言处理中的深度学习:方法及应用》
情感分类是自然语言处理的重要分支,传统情感分类主要有基于情感词典的和基于机器学习的,最新的方法是基于深度学习的。
1、基于情感词典的方法
缺点:受限于情感词典的质量和覆盖度。
定义:是对人脑的简单模拟,核心模式是基于词典和规则,即以情感词典作为判断评论情感极性的主要依据,根据以往经验对现有词汇做出评价的一种模型,eg1:通常把讨厌、糟糕作为消极词,把高兴。快乐作为积极词,通过句子中出现的情感词,预测该句子的情感极性。
依赖于:情感词典的构建和判断规则质量,而两者都需要耗费很多人力,包括人工设计和先验知识。
2、基于机器学习
核心:模型训练
缺点:模型训练依赖于标注数据集的质量,高质量的数据集需要投入大量人工成本。需要高质量的特征构造和选取。
常用特征有:N-gram特征、句法特征等。
3、基于深度学习模型
-
定义:
深度学习是基于特征自学习和深度神经网络(DNN)的一系列