满二叉树: 除最后一层外,每一层上的所有节点都有两个子节点。
完全二叉树:一颗深度为k二叉树,有n个节点,然后,也对这棵树进行编号,如果所有的编号都和满二叉树对应,那么这棵树是完全二叉树。
二叉树的基本性质:
1、在二叉树的第K层至多有2的(k-1)次方个节点。
2、深度为m的二叉树至多有2的m次方-1个节点。
3、对任何一个二叉树,度为0的节点(叶子节点)总是比度为2的节点多一个。
4、具有n个节点的完全二叉树的深度为【log2 n】+1 ,其中【log2 n】表示log2 n 的整数部分。
5、如果对一颗有n个节点的完全二叉树的节点按层编序号(从1开始),则:
如果 i=1,则节点i无双亲,是二叉树的根;如果i>1,则其双亲是节点【i/2】。
如果2i>n,则节点i为叶子节点(无左孩子)。
如果2i+1>n,则节点i无右孩子。