题目
方法:二分+dfs+剪枝
这方面的c++实现是第一次,脑子一片混沌,后来参照大神代码才明白。
二分最多满足几个嘴巴,相当于定了下界,再dfs验证。
关键是剪枝:
1.以最小的嘴累加,与蛋糕总和比较,找到最多能满足的嘴数,就是二分上边界。
2.dfs时记录当前浪费的蛋糕和,总蛋糕量-当前浪费的蛋糕和<当前二分的要满足的嘴大小和,就说明无法满足,则退出。
3.dfs时若当前嘴巴大小与下一个相同,则下一个无需从蛋糕1开始枚举,直接从当前嘴巴枚举的蛋糕i开始。
尽管知道怎么做,还是调了好久的代码= =。
#include<iostream>
#include<algorithm>
using namespace std;
int cake[55],fcake[55],sum[1025],mou[1025],n,m,mid,space,tot=0;
int cmp(const void *a, const void *b)
{
return(*(int *)a-*(int *)b);
}
bool dfs(int deep,int pos)
{
if(deep<=0) return 1; //递归边界
if(tot-space<sum[mid]) return 0;//剪枝2
for(int i=pos;i<=n;i++)
if(fcake[i]>=mou[deep])
{
fcake[i]-=mou[deep];
if(fcake[i]<mou[1]) space+=fcake[i];
if(mou[deep]==mou[deep-1]) //剪枝3
{
if(dfs(deep-1,i)) return 1;
}
else if(dfs(deep-1,1)) return 1;
if(fcake[i]<mou[1]) space-=fcake[i];
fcake[i]+=mou[deep];
}
return 0;
}
int main()
{
int i;
cin>>n;
for(i=1;i<=n;i++)
{
cin>>cake[i];
tot+=cake[i];
}
cin>>m;
for(i=1;i<=m;i++) cin>>mou[i];
qsort(cake+1,n,sizeof(int),cmp);
qsort(mou+1,m,sizeof(int),cmp);
sum[0]=0;
for(i=1;i<=m;i++) sum[i]=sum[i-1]+mou[i];
while(sum[m]>tot) m--;//剪枝1
int left=1,right=m;
mid=((left+right)>>1);
while(left<=right)
{
for(i=1;i<=n;i++) fcake[i]=cake[i];
space=0;
if(dfs(mid,1)) left=mid+1;
else right=mid-1;
mid=((left+right)>>1);
}
cout<<mid<<endl;
return 0;
}
二分需要注意,要想清楚输出什么,举几个特殊例子调整left,right的更新。
递归边界要写“<”虽然不知道为什么。。但少了就不行了。。。
一开始把剪枝2写成了sum[m]竟然只有三个点wa,不得不说vijos的数据太水了吧。