- 博客(30)
- 资源 (1)
- 收藏
- 关注
原创 【投资心法,帮助理清思路】
2.很多散户在亏损的时候就死拿、理所当然的持有,而不是果断止损,似乎忘却了风险的存在。但是在盈利时候就会及其厌恶风险,利润有一点回撤就会卖出。3.好公司不一定会有好股票,比如,好公司的股票就值10块,但是现在处于20块的高位。买定离手,不要天天盯着数字上下跳动,这样会拿不住,我们要做时间的朋友。5.热门股的风险大于冷门股。如果在高位的热门股一旦下跌,跌幅会很大。1.导致行为偏差的是认知偏差。1.投机分为理性投机和非理性投机。2.投机是一种本能,是想获取财富。5.但是长线的机会比短线大。
2025-12-25 15:30:01
150
原创 图的表示方法
节点 A 有 3 个邻居,节点 B 有 100 个邻居 → 无法像图像那样用“3×3 卷积核”统一处理。图的节点顺序可以任意打乱,但图的语义不变 → 传统神经网络(依赖输入顺序)无法直接处理。图中的节点没有天然的 (x, y, z) 坐标(可视化布局 ≠ 真实位置)。因为深度学习模型无法直接处理“图”这种非欧几里得、不规则的结构数据,两个节点之间的“距离”是最短路径长度(跳数),而不是欧氏距离。在社交网络中,“朋友的朋友”可能比地理上更近的人更“相关”。你不能说“节点 A 在节点 B 的正东方向”。
2025-12-24 22:04:47
355
原创 图数据挖掘
从这些复杂的连接关系中提取有价值的信息,而不仅仅是分析孤立的数据点。也就是,图数据挖掘 = 从“关系”中挖“知识”。图数据挖掘也叫做图数据机器学习。
2025-12-24 21:49:09
449
原创 数据挖掘14
知识抽取就是把“杂乱的文字”变成“结构化的知识”,让机器不仅能“读”,还能“懂”。原始句子:“特斯拉CEO埃隆·马斯克于2022年收购了推特。知识抽取结果:埃隆·马斯克(人物)特斯拉(组织)推特(组织)2022年(时间)(埃隆·马斯克, 担任, 特斯拉CEO)(埃隆·马斯克, 收购, 推特)事件类型:企业收购买家:埃隆·马斯克被收购方:推特时间:2022年。
2025-12-20 10:57:20
331
原创 数据挖掘13
过多的无关或冗余特征会增加模型复杂度,使模型“记住”训练数据中的噪声,从而在新数据上泛化能力变差。举个例子:如果你要预测一个人是否会贷款违约,那么“信用记录”很重要,“头发颜色”就不重要。保留它们不仅无益,反而有害。比如“年龄”还是“年龄”,不会变成“标准化后的年龄”或“年龄平方”。所以特征子集选择会优先保留那些和任务目标相关的特征。例如:同时包含“年龄”和“出生年份”是冗余的。特征越少,模型训练所需的时间和内存就越少。特征越少,越容易理解模型是如何做出决策的。特征的原始意义保持不变,容易理解和解释。
2025-12-20 10:53:26
283
原创 数据挖掘12
首先,通过人工定义或学习类别的语义属性(如形状、颜色等),将类别映射到属性空间。然后,模型学习从输入数据到属性向量的映射。最后根据属性匹配来识别新类别。给定一张图片,如何提取区分其中目标类型的特征,即形成目标的表示。
2025-12-19 10:03:37
950
原创 数据挖掘09
条件随机场(Conditional Random Field, CRF) 是一种用于建模序列标注或结构化预测问题的判别式概率图模型。
2025-12-18 15:15:35
130
原创 【炒股学习】集合竞价
9.15 - 9.20对于普通人来说没有意义。9:25 是集合竞价结束的时间,此时已经确定了当天的开盘价。9:25–9:30 的挂单不影响开盘价(因为开盘价在9:25就定好了)。这5分钟只是让你“提前排队”,等9:30一到,就能快人一步参与交易。
2025-12-18 13:30:46
382
原创 数据挖掘08
把未知量伸长或者缩短到参考模式的长度。然后使用动态规划方法把被比较的数据扭曲或者弯折,时期特征与模型特征对齐。比如:DTW**隐马尔可夫模型(Hidden Markov Model, HMM)**是一种经典的概率图模型,用于建模含有隐藏状态的时序随机过程。
2025-12-17 21:30:06
368
原创 数据挖掘07
按时间排列的观测数据的序列。在进行数据挖掘时,必须考虑数据间存在的时间关系。DTW(Dynamic Time Warping,动态时间规整) 是一种用于衡量两个时序序列相似度的算法,特别适用于长度不同、速度不一致或存在时间偏移的时间序列。
2025-12-16 19:01:32
534
原创 数据挖掘06
在模式识别中,不变性指的是:当输入数据发生某种变换(如平移、旋转、缩放、光照变化等)时,模型的输出(如分类结果)保持不变。例如:一张猫的图片向左移动几个像素,模型仍应识别为“猫” → 平移不变性池化(Pooling)是卷积神经网络(CNN)中一种重要的下采样(downsampling)操作。
2025-12-16 18:06:28
1308
原创 数据挖掘05
包含动量的随机梯度下降(Momentum Stochastic Gradient Descent, 简称 SGD with Momentum)是一种在标准随机梯度下降(SGD)基础上引入“动量”项的优化算法,旨在加速收敛、减少震荡,并帮助模型跳出局部极小值或鞍点。1)更新方向完全依赖当前梯度,容易产生高方差和震荡;2)在狭窄峡谷或非凸地形中收敛缓慢;3)容易陷入局部最优或鞍点。AdaGrad(Adaptive Gradient Algorithm) 是一种自适应学习率优化算法。
2025-12-15 15:06:30
759
原创 数据挖掘04
是指输入数据从输入层到达输出层并产生预测结果的过程。是根据输出结果和真实结果之间的差异,从输出单元开始,从后往前更新神经网络参数的过程。前向传播和反向传播组成了神经网络模型训练的一个循环闭合过程。(2)接下来,我们就来看看反向传播是怎么更新参数的?举一个具体的例子,帮我们加深理解。神经网络:一个三层网络(输入 → 隐藏 → 输出)节点1:输入层,输入标量 x=2节点2:隐藏层,z1 = w1x + b1, 激活后 a1 =σ(z1)。
2025-12-15 13:03:24
810
原创 VL4 移位运算与乘法
已知d为一个8位数,请在每个时钟周期分别输出该数乘1/3/7/8,并输出一个信号通知此时刻输入的d有效(d给出的信号的上升沿表示写入有效)思路:每时每刻计算new_out,用时序逻辑赋值给out。
2025-12-14 14:37:09
160
原创 数据挖掘03
原因:虽然 Logistic 函数本身是非线性的,但是它不能建模复杂的非线性关系,只能处理线性可分的数据,是线性分类器。4.当类别数 K=2(即二分类)时,Softmax 函数在数学上等价于 Sigmoid 函数。线性回归难以建模处理二分类问题,而 logistic 回归能处理二分类问题,关于其原因,说法。C. Logistic 函数将加权输入进行“扭曲”,是一种非线性操作,因此能够建模非线性关系。其次,对比分类任务:标签是离散类别(如“猫”“狗”),不能直接相减,不能用 MAE。
2025-12-14 14:24:01
1203
原创 数据挖掘01
2.“猫”的语义是由 d₁ 高(动物)、d₂ 低(非交通工具)、d₃ 低(不可吃)、d₄ 高(家庭宠物) 共同决定的;(3)向量的长度等于词典的大小,很好理解,词典的大小就是有多少个词,每个词有自己的位置,那么词的数量就是向量的长度。输入:周围 2n 个词(如窗口大小为 2,则输入“我 [ ] 吃苹果”中的“我”和“吃”、“苹果”)(5)语义相近的两个词语,在空间中的距离与其他词语的距离相同,难以体现其联系。知识指导决策和行动。假设词汇表 = [“猫”, “狗”, “汽车”, “苹果”],大小为4。
2025-12-13 14:46:56
1260
原创 VL12 4bit超前进位加法器电路
计算c1,要先计算括号部分:(A_in[0]&B_in[0] | A_in[0]^B_in[0] & C_1 )把 C1~C4 全部用原始输入(A, B, Cin)直接表示出来,不依赖中间进位!但是这并不是并行计算,虽然看似像,但不是。每一步都依赖上一步的输出,高位必须等待低位计算完成。这种展开的嵌套写法就像g(m(f(x))),思路二是真正的并行计算,只用到P、G、c0。要先计算最内层的f(x)所以,这不是并行逻辑。
2025-12-13 10:46:53
754
原创 VL23 ROM的简单实现
2.设置reg变量out,当初是为了解决data为wire型无法在always块里被赋值,但是现在是:现将rom[addr]赋值给out,out再赋值给data,为何不去掉中间商呢?1.rom的赋值冗余,分析其目的就是想把rom的值保持为{0,2,4,6,8,10,12,14},可以考虑使用initial。总容量 = 深度 × 宽度 = 1024 × 8 = 8192 位 = 1 KB。“1K” 表示深度 = 1024(即有 1024 个地址);“×8” 表示宽度 = 8 位(每个地址输出 8 位数据);
2025-12-11 15:01:04
152
原创 VL22 根据状态转移图实现时序电路
3.清晰的两段式结构,一个always块计算new_state,另一个always块完成state的变化。1.new_state 的计算是组合逻辑,要用 =。2.在s2状态时候,Y和C有关系。去掉D1,D0更简洁。
2025-12-11 14:34:18
1053
原创 【verilog】 VL2 异步复位的串联T触发器
块结束时”指的是 当前过程块(always 或 initial 块)中所有语句的执行逻辑完成之后,具体来说是非阻塞赋值(<=)的赋值动作被调度到仿真时间步的末尾才真正执行。计算 c <= a 的右边值(注意:这里用的是 a 的当前值,不是刚要被赋的新值)。2.立即更新:赋值右边计算后,左边变量立刻被更新,后续语句看到的是新值。1.并行调度:所有非阻塞赋值的右边先计算,等到块结束时再同时更新左边。2.延迟更新:在当前 always 块内,读取的仍是旧值。计算 a <= b 的右边值(即 b 的当前值)。
2025-12-10 20:52:42
478
原创 【verilog】VL5 位拆分与运算
本文比较了两种Verilog实现16位数据拆分运算的写法。第一种写法在组合逻辑中存储输入数据会产生锁存器(latch),而第二种写法使用时序逻辑(时钟触发)存储数据更合理。关键区别在于:1)组合逻辑中变量未在所有分支赋值会产生latch;2)存储数据应使用时序逻辑;3)输出波形显示sel和out同步变化,适合用组合逻辑。文中还分析了正确的数据采样方式,指出组合逻辑中不能使用非阻塞赋值(<=),并解释了时钟上升沿采样的时序关系。
2025-12-09 17:11:57
270
原创 VL3 奇偶校验
本文介绍了奇偶校验的基本原理及其在数字电路中的应用。奇偶校验通过计算数据中"1"的个数来判断奇偶性,并添加校验位。偶校验使总"1"数为偶数,奇校验使总"1"数为奇数。文章通过Verilog代码示例展示了具体实现方法,当sel=1时为偶校验(check=^bus),sel=0时为奇校验(check=~^bus)。该模块接收32位总线数据和控制信号,输出相应的校验位,可用于数据传输中的错误检测。
2025-12-09 17:09:18
598
表格拆分工具,按照表格中某列的值,拆分表格
2025-12-11
java Swing gui 信息管理系统
2020-10-31
中序线索二叉树报异常
2024-04-12
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅