数据挖掘07
一.时序数据挖掘概述
1.定义
按时间排列的观测数据的序列。
在进行数据挖掘时,必须考虑数据间存在的时间关系。
2.采样间隔
分为:
等间隔采样:采样间隔固定
非等间隔采样:采样间隔有变化

答案:ABD

答案:C
二、锁步度量方法
锁步(Lockstep)对齐指的是:两个时间序列在比较时,第 i 个点只能与另一个序列的第 i 个点对齐,不允许时间轴上的伸缩、压缩或偏移。
这种对齐方式也称为逐点对齐(point-wise alignment)或刚性对齐(rigid alignment)。
欧氏距离(Euclidean Distance)就是典型的锁步度量方法。
公示如下:

例题:

答案:BC
缺点:
在未预对齐的时间序列上直接使用锁步度量,会导致语义上不对应的点被比较,从而产生误导性结果。
例子:
同一个人说两次你好,语速不同。
此时欧氏距离在这种情况下会失效,因为强制 i↔i 对齐。
所以,我们想要找到两个时间序列之间最佳的对齐方式,使得
形态相似但是时序不对齐的两段序列通过缩放、平移等手段实现匹配。
于是引出DTW方法。
三.DTW方法(动态时间规整方法)
1.定义
DTW(Dynamic Time Warping,动态时间规整) 是一种用于衡量两个时序序列相似度的算法,特别适用于长度不同、速度不一致或存在时间偏移的时间序列。
2.核心思想
允许时间轴非线性拉伸/压缩,以找到最佳对齐方式,使两个序列的距离最小。
3.算法流程
假设:

步骤 1:构建距离矩阵(Cost Matrix)
计算每对点的局部距离(通常用欧氏距离或绝对差):

形成一个 n×m 的矩阵。
步骤 2:构建累积代价矩阵 D
使用动态规划递推:


步骤 3:回溯得到最优路径

步骤 4:返回最小总距离

时间复杂度:O(nm)(无约束)
空间复杂度:O(nm)(存储整个矩阵),可优化至 O(min(n,m))(只存两行)
4.例子

第一步:计算局部距离矩阵 d(i,j)
使用绝对差作为点间距离(也可用平方差):


第二步:构建累积代价矩阵 D(i,j)
第一行:
D[1][1]=d(1,1)+min(D[0][1],D[1][0],D[0][0])=0+min(∞,∞,0)=0
D[1][2]=d(1,2)+min(D[0][2],D[1][1],D[0][1])=0+min(∞,0,∞)=0
D[1][3]=1+min(∞,D[1][2]=0,∞)=1+0=1
D[1][4]=2+min(∞,D[1][3]=1,∞)=2+1=3
第二行:
D[2][1] = d(2,1)=1 + min(D[1][1]=0, ∞, ∞) = 1 + 0 = 1
D[2][2] = 1 + min(D[1][2]=0, D[2][1]=1, D[1][1]=0) = 1 + 0 = 1
D[2][3] = 0 + min(D[1][3]=1, D[2][2]=1, D[1][2]=0) = 0 + 0 = 0
D[2][4] = 1 + min(D[1][4]=3, D[2][3]=0, D[1][3]=1) = 1 + 0 = 1
第三行:
D[3][1] = 2 + min(D[2][1]=1, ∞, ∞) = 2 + 1 = 3
D[3][2] = 2 + min(D[2][2]=1, D[3][1]=3, D[2][1]=1) = 2 + 1 = 3
D[3][3] = 1 + min(D[2][3]=0, D[3][2]=3, D[2][2]=1) = 1 + 0 = 1
D[3][4] = 0 + min(D[2][4]=1, D[3][3]=1, D[2][3]=0) = 0 + 0 = 0

第三步:回溯最优对齐路径(Warping Path)
DTW 距离 = D[3][4] = 0
(3,4): 值=0,来自 d(3,4)=0 + D[2][3]=0 → 前驱是 (2,3)
(2,3): 值=0,来自 d(2,3)=0 + D[1][2]=0 → 前驱是 (1,2)
(1,2): 值=0,来自 d(1,2)=0 + D[1][1]=0 → 前驱是 (1,1)
所以是:
(1,1) → (1,2) → (2,3) → (3,4)
对齐解释:
x₁=1 ↔ y₁=1 和 y₂=1(X 的第一个点匹配 Y 的前两个点)
x₂=2 ↔ y₃=2
x₃=3 ↔ y₄=3
实现X与Y的后三个匹配。
5.DTW存在的问题
(1)问题:病态匹配
**“DTW 的病态匹配”(Pathological or Degenerate Warping)**是指动态时间规整(DTW)算法在某些情况下产生的不合理、过度扭曲、语义错误但数学上最优的对齐路径。
这类匹配虽然使累积距离最小,却严重违背了实际应用场景中的时序逻辑或物理意义,因此被称为“病态”。
(2)原因:不限制匹配路径生成的范围
没有限制路径可以偏离主对角线多远,这会导致:
1)序列 X 的第 1 个点可以匹配 Y 的最后 100 个点;
2)Y 的中间一段可以完全被“跳过”(通过垂直移动);
3)路径可以极度弯曲,形成“L”形、“Z”形等。
这就会导致:
1)病态匹配(Pathological warping)
2)语义错误对齐
3)对噪声敏感
4)非物理对齐
(3)解决方法:
Sakoe-Chiba Band(最常用):
限制路径不能偏离主对角线超过 窗口半宽 r

**
6.题目
**

答案:B
解释:
B是经典的 DTW-KNN 方法。选择最近的5个样本(k=5),按多数票决定类别。简单有效,广泛用于时间序列分类。
A 加权投票可以提升精度,但“前n个”太模糊,未指定具体数量(如k=5)。虽然合理,但不如B明确、标准。
CD选取最远的样本,显然不对。
1万+

被折叠的 条评论
为什么被折叠?



